Tyrosyl-tRNA Synthetase and its Separated Domains are Suppositional Components of Prostate Cancer Pathogenesis

M. Grom, L. Yakovenko, L. Sidorik, O. Kornelyuk, V. Grygorenko, M. Vikarchuk
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine, Kyiv; Institute of Molecular Biology and Genetics NAS of Ukraine, Kyiv; Institute of Molecular Biology and Genetics NAS of Ukraine, Kyiv; Institute of Molecular Biology and Genetics NAS of Ukraine, Kyiv; SI Institute of Urology NMAS of Ukraine, Kyiv; SI Institute of Urology NMAS of Ukraine, Kyiv

Abstract


Elevated levels of autoantibodies against tyrosyl-tRNA synthease and its separated fragments enriched with proinflammatory and angiogenic properties in sera of patients with prostate cancer were shown. In serum samples of patients the highest levels of autoantibodies against C-terminal domain were observed. Minimal autoreactivity among persons with oncopathology was shown against N-terminal domain of tyrosyl-tRNA synthetase.


Keywords


tyrosyl-tRNA synthetase, autoantibodies, prostate cancer

Full Text:

PDF>PDF

References


Кондратюк ЮЮ, Сидорик ЛЛ, Бобик ВІ, Рябенко ДВ, Корнелюк АІ. Виявлення аутоантитіл до тирозил-тРНК синтетази при серцевих дисфункціях. Biopolym. Cell. 2010;26(2) 373-377.

Albertsen PC, Hanley JA, Fine J: 20-year outcomes following conservative management of clinically localized prostate cancer. JAMA. 2005;293:2095-2101.

Belperio JA, Keane MP, Arenberg DA, Addison CL, Ehlert JE, Burdick MD, Strieter RM. CXC chemokines in angiogenesis. J Leukoc Biol. 2000;68(1):1–8.

Dean RA, Cox JH, Bellac CL, Doucet A, Starr AE, Overall CM. Macrophage-specific metalloelastase (MMP-12) truncates and inactivates ELR+ CXC chemokines and generates CCL2, -7, -8, and -13 antagonists: potential role of the macrophage in terminating polymorphonuclear leukocyte influx. Blood. 2008;112(8):3455–64.

Duffy MJ. PSA in screening for prostate cancer: more good than harm or more harm than good? Advances in clinical chemistry. 2014;66:1–23.

Fukumura D, Jain RK. Tumor microvasculature and microenvironment: Targets for antiangiogenesis and normalization. Microvasc Res 2007.74:72-84.

Gehrs BC, Friedberg RC. Autoimmune hemolytic anemia. Am J Hematol. 2002;69(4):258–71.

Greenberg Y, King M, Kiosses WB, Ewalt K, Yang X, Schimmel P, Reader JS, Tzima E. The novel fragment of tyrosyl-tRNA synthetase, miniTyrRS, is secreted to induce an angiogenic response in endothelial cells. FASEB J. 2008;22(5):1597–605.

Grom MYu, Yakovenko LF, Granich VM, Dobrohod AS, Torbas OO, Radchenko GD, et al. Autoantibodies against tyrosyl-tRNA synthetase and its separated domains at essential hypertension. Biopolym Cell. 2015;31(4):255–263.

Gross WL, Trabandt A, Reinhold-Keller E. Diagnosis and evaluation of vasculitis. Rheumatology (Oxford). 2000;39(3):245–52.

Guo M, Yang XL, Schimmel P. New functions of aminoacyl-tRNA synthetases beyond translation. Nat Rev Mol Cell Biol. 2010;11(9):668–74.

Howard OM, Dong HF, Yang D, Raben N, Nagaraju K, Rosen A, et al. Histidyl-tRNA synthetase and asparaginyl-tRNA synthetase, autoantigens in myositis, activate chemokine receptors on T lymphocytes and immature dendritic cells. J Exp Med. 2002;196(6):781–91.

Jura M, Rychlewski L, Barciszewski J. Comprehensive insight into human aminoacyl-tRNA synthetases as autoantigens in idiopathic inflammatory myopathies. Crit Rev Immunol. 2007;27(6):559–72.

Kim D, Kwon NH, Kim S. Association of Aminoacyl-tRNA Synthetases with Cancer Top Curr Chem. 2014;344:207–246.

Kornelyuk AI, Tas MPR, Dubrovsky AL, Murray JC. Cyokine activity of the non-catalytic EMAP-2-like domain of mammalian tyrosyl-tRNA synthetase. Biopolym Cell. 1999;15(2):168–72.

Kunst CB, Mezey E, Brownstein MJ, Patterson D. Mutations in SOD1 associated with amyotrophic lateral sclerosis cause novel protein interactions. Nat Genet. 1997;15(1):91–4.

Mahler M, Miller FW, Fritzler MJ. Idiopathic inflammatory myopathies and the anti-synthetase syndrome: a comprehensive review. Autoimmun Rev. 2014;13(4–5):367–71.

Mirande M. Aminoacyl-tRNA synthetase family from prokaryotes and eukaryotes: structural domains and their implications. Prog Nucleic Acid Res Mol Biol. 1991;40:95–142.

Mucci LA, Powolny A, Giovannucci E, Liao Z, Kenfield SA, Shen R, et al. Prospective Study of Prostate Tumor Angiogenesis and Cancer-Specific Morality in Health Professionals Follow-Up Study. StudyJ Clin Oncol. 2009;27:5627-5633.

Nangle LA, Zhang W, Xie W, Yang XL, Schimmel P. Charcot-Marie-Tooth disease-associated mutant tRNA synthetases linked to altered dimer interface and neurite distribution defect. Proc Natl Acad Sci USA. 2007;104(27):11239–44.

Park SG, Schimmel P, Kim S. Aminoacyl tRNA synthetases and their connections to disease. Proc Natl Acad Sci USA. 2008;105(32):11043–9.

Porter CR, Kodama K, Gibbons RP, Correa RJr, Chun FK, Perrotte P, Karakiewicz PI. 25-year prostate cancer control and survival outcomes: A 40-year radical prostatectomy single institution series. J Urol 2006;176:569-574.

Sampath P, Mazumder B, Seshadri V, Gerber CA, Chavatte L, Kinter M, et al. Noncanonical function of glutamyl-prolyl-tRNA synthetase: genespecific silencing of translation. Cell. 2004;119(2):195–208.

Scheper GC, van der Klok T, van Andel RJ, van Berkel CG, Sissler M, Smet J et al. Mitochondrial aspartyl-tRNA synthetase deficiency causes leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation. Nat Genet. 2007;39(4):534–9.

Schlick B, Massoner P, Lueking A, Charoentong P, Blattner M, Schaefer G, et al. Serum Autoantibodies in Chronic Prostate Inflammation in Prostate Cancer Patients. PLoS ONE. 2016;11(2):e0147739.

Vo MN, Yang XL, Schimmel P. Dissociating quaternary structure regulates cell-signaling

functions of a secreted human tRNA synthetase. J Biol Chem. 2006;286(13):11563–11568.

Wakasugi K, Schimmel P. Two distinct cytokines released from a human aminoacyl-tRNA synthetase. Science. 1999;284(5411):147–51.

Wakasugi K, Schimmel P. Highly differentiated motifs responsible for two cytokine activities of a split human tRNA synthetase. J Biol Chem. 1999;274(33):23155–9.

Wakasugi K, Slike BM, Hood J, Ewalt KL, Cheresh DA, Schimmel P. Induction of angiogenesis by a fragment of human tyrosyl-tRNA synthetase. J Biol Chem. 2002;277(23):20124–6.

Won Lee S, Sun Kang Y, Kim S. Multifunctional proteins in tumorigenesis: aminoacyl-tRNA synthetases and translational components. Curr Proteomics. 2006;3(4):233–47.

Yang X-L, Liu J, Skene RJ, McRee DE, Schimmel P. Crystal structure of an EMAP-II-like cytokine released from a human tRNA synthetase. Helv Chim Acta. 2003;86(4):1246–57.

Zhou X, Xue L, Hao L,. Liu S,. Zhou F, Xion, et al Proteomics-based identification of tumor relevant proteins in lung adenocarcinoma. Biomed Pharmacother. 2013;67(7):621-7.

Дубровский А.Л., Браун Дж., Корнелюк А.И., Мюррей Дж.К., Мацука Г.Х. Бактериальная экспрессия полноразмерных и усеченных форм цитокина ЕМАР-2 и цитокинподобного домена тирозил-тРНК синтетазы млекопитающих. Biopolym. Cell. 2000; 16(3): 229-235.

Корнелюк А.И., Курочкин И.В., Мацука Г.Х. Тирозил – тРНК синтетаза из печени быка. Выделение и физико-химические свойства. Мол. биол. 1988; 22(1): 176-186.

Корнелюк АИ. Структурно-функциональное исследование тирозил-тРНК синтетазы млекопитающих. Biopolym. Cell. 1998; 14 (4): 349-359.

Леванец ОВ, Найденов ВГ, Одынец КА [и др.]. Гомология С-концевого некаталитического домена тирозил-тРНК синтетазы млекопитающих с цитокином EMAP II и некаталитическими доменами метионил- и фенилаланил-тРНК синтетаз. Biopolym Cell. 1997; 13(6): 474–8.

Рибкинска ТА, Корнелюк АИ, Берестень АИ, Мацука ГХ. Иммунохимический подход к изучению структуры тирозил-тРНК синтетазы из печени быка. Biopolym. Cell. 1991;7(5): 33–36.




DOI: http://dx.doi.org/10.17721/2616_6410.2016.20.38-44

Refbacks

  • There are currently no refbacks.


Лицензия Creative Commons
This journal is available according to the Creative Commons License «Attribution» («Атрибуція») 4.0 Global (CC-BY).