Phospholipid composition of the inner mitochondrial membrane of rat hepatocytes upon development of different types of steatohepatosis

D. Voieikova, L. Stepanova, T. Beregova, L. Ostapchenko, M. Kondro
Taras Shevchenko National University of Kyiv, Kyiv; Taras Shevchenko National University of Kyiv, Kyiv; Taras Shevchenko National University of Kyiv, Kyiv; Taras Shevchenko National University of Kyiv, Kyiv; Danila Galitsky Lviv National Medical University, Lviv


Nonalcoholic fatty liver disease (NAFLD) or steatohepatosis has recently become widespread, but its pathogenesis has not been thoroughly understood for today. Most scientists have appropriated a central role in the mechanisms of its development to mitochondria and so-called "mitochondrial dysfunction," which is observed in most animal models and in most patients. The aim of this work was to determine phospholipid composition of inner mitochondrial membrane of rat hepatocytes under diet-induced and glutamate-induced steatohepatosis, as well as to compare the data about developing steatohepatosis of different types.
Obtained data indicate the disruption of normal functional state of the inner mitochondrial membrane under the conditions of diet-induced and glutamate-induced steatohepatosis. Amount of oxidized forms of the major phospholipids including cardiolipin, indicates the increasing oxidative stress under the conditions of both steatohepatosis types.


steatohepatosis, mitochondria, "mitochondrial dysfunction" phospholipids oxidative stress

Full Text:



Aoun M. Rat liver mitochondrial membrane characteristics and mitochondrial functions are more profoundly altered by dietary lipid quantity than by dietary lipid quality: effect of different nutritional lipid patterns / M. Aoun, C. Feillet-Coudray, G. Fouret [et al.] // British Journal of Nutrition. – 2012. – Vol. 107, N 5. – P. 647-659.

Monteiro J.P. Mitochondrial lipid remodeling in pathophysiology: A new target for diet and therapeutic interventions / J.P. Monteiro, P.J. Oliveira, A.S. Jurado // Progress in Lipid Research. – 2013. – Vol. 52, N 4. – P. 513-528.

Goncalves I.O. Exercise alters liver mitochondria phospholipidomic profile and mitochondrial activity in non-alcoholic steatohepatitis / I.O. Goncalves, E. Maciel, E. Passos [et al.] // The International Journal of Biochemistry & Cell Biology. – 2014. – Vol. 54. – P. 163-173.

Петренко А. Ю. Выделение гепатоцитов крыс не ферментативным методом: детоксикационная и дыхательная активности / А. Ю. Петренко, А. Н. Сукач, А. Д. Росляков // Биохимия. – 1991. – Т. 56, № 9. – С. 1647 – 1650.

Paradies G. Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease / G. Paradies, V. Paradies, F.M. Ruggiero [et al.] // World Journal of Gastroenterology. – 2014. – Vol. 20(39). – P. 14205-14218.

Pessayre D. Role of mitochondria in non-alcoholic fatty liver disease // Journal of Gastroenterology and Hepatology. – 2007. – Vol. 22. – P. S20-S27.

Rolo A.P. Role of oxidative stress in pathogenesis of nonalcoholic steatohepatitis / A.P. Rolo, J.S. Teodoro, C.M. Palmeira // Free Radical Biology and Medicine. – 2012. – Vol 52. – P. 59-69.

Kondro M. Metabolic profile and morpho-functional state of the liver in rats with glutamate-induced obesity / M. Kondro, G. Mykhalchyshyn, P. Bodnar, N. Kobyliak, T. Falalyeyeva // Current Issues in Pharmacy and Medical Sciences. –2013. – Vol. 26(4). – P. 379–381.

Quines C.B. Homeostatic effect of p-chloro-diphenyl diselenide on glucose metabolism and mitochondrial function alterations induced by monosodium glutamate administration to rats / C.B. Quines, S.G. Rosa, M.N. Chagas [et al.] // Amino Acids. – 2016. – Vol. 48(1). – P. 137-148.

Oliveira M.L. Liver mitochondrial function and redox status in an experimental model of non-alcoholic fatty liver disease induced by monosodium L-glutamat in rats / M.L. Oliveira, E.L. Ishii-Iwamoto, N.S. Yamamoto [et al.] // Experimental and Molecular Pathology. – 2011. – Vol. 91. – P. 687-694.

Gusdon A.M. Nonalcoholic fatty liver disease: pathogenesis and therapeutics from a mitochondria – centric perspective / A.M. Gusdon, K. Song, S. Qu // Oxidative Medicine and Cellular Longevity. – 2014. – Vol. 2014. – P. 1-20.

Folch J. A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues / J. Folch, M. Leez, G.H. Stanley // Journal of Biological Chemistry. – 1957. – Vol. 226, N 2. – P. 497-501.

Ardail D. Mitochondrial contact sites / D. Ardail, J.P. Privat, M. Erget-Charlier [et al.] // The Journal of Biochemistry. – 1990. – Vol. 265. – P. 18797-18802.

Kakimoto P.A. Effects of high fat diets on rodent liver bioenergetics and oxidative imbalance / P.A. Kakimoto, A.J. Kowaltowski / Redox Biology. – 2016. – Vol. 8. – P. 216-225.

Feillet-Coudray C. Impact of high dietary lipid intake and related metabolic disorders on the abundance and acyl composition of the unique mitochondrial phospholipid, cardiolipin / C. Feillet-Coudray, G. Fouret, F. Casas [et al.] // Journal of Bioenergetics and Biomembranes. – 2014. – Vol. 46. – P. 447-457.

Wei Y. Nonalcoholic fatty liver disease and mitochondrial dysfunction / Y. Wei, R.S. Rector, J.P. Thyfault [et al.] // World Journal of Gastroenterology. – 2008. – Vol. 14(2). – P. 193-199.

Petrosillo G. Mitochondrial dysfunction in rat with nonalcoholic fatty liver. Involvement of complex I, reactive oxygen species and cardiolipin / G. Petrosillo, P. Portincasa, I. Grattagliano [et al.] // Biochimica et Biophysica Acta. – 2007. Vol. 1767. – P. 1260-1267.



  • There are currently no refbacks.

Лицензия Creative Commons
This journal is available according to the Creative Commons License «Attribution» («Атрибуція») 4.0 Global (CC-BY).