Oxidative modification of proteins in rat serum under experimental osteoarthrosis and long-term administration of a multiprobiotic

A. Vovk, O. Korotkyi, L. Kot, K. Dvorshchenko
Taras Shevchenko National University of Kyiv, Kyiv; Taras Shevchenko National University of Kyiv, Kyiv; Taras Shevchenko National University of Kyiv, Kyiv; Taras Shevchenko National University of Kyiv, Kyiv

Abstract


The aim of the study was to investigate the effect of multiprobiotics on the content of products of oxidative modification of proteins and the level of sulfhydryl groups in blood serum of rats during monoiodoacetate-induced osteoarthritis. The study was carried out on white non-linear, sexually mature male rats (weight 180-240 g), according to general ethical principles of experiments on animals. All animals were divided into four experimental groups. The first group - Control: animals got injection into knee ligament 0.05 ml of 0.9% NaCl solution on the first day of the experiment and then got intragastric administration 1 ml of drinking water per 1 kg of the animal weight daily for 14 days from the 8th to 22nd days. The second group - Multiprobiotic: animals got injection into knee ligament 0.05 ml of 0.9% NaCl solution on the first day of the experiment and then got intragastric administration 140 mg/kg of multiprobiotic Symbiter® (Prolisok ", Ukraine) diluted in 1 ml of drinking water per 1 kg of animal weight. The third group, MIA-induced OA: animals got injection into knee ligament 1 mg of sodium monoiodacetate, dissolved in 0.05 ml of 0.9% NaCl on the first day of the experiment and then got intragastric administration 1 ml of drinking water per 1 kg of the animal weight daily for 14 days from the 8th to 22nd days. The fourth group – MIA-induced OA + Multiprobiotic: animals got injection into knee ligament 0.05 ml of 1 mg of sodium monoiodacetate, dissolved in 0.05 ml of 0.9 % NaCl on the first day of the experiment and then got intragastric administration 140 mg/kg of multiprobiotic diluted in 1 ml of drinking water per 1 kg of animal weight. All animals were killed on day 30 of the experiment, according to the protocol of the ethics committee with rapid blood sampling. The content of the products of oxidative modification of proteins (OMP) and oligopeptides was determined by the level of carbonyl derivatives that were detected in reaction with 2,4-initrophenylhydrazine. The level of total, protein-bound and non-protein sulfhydryl (SH) -groups was measured by the Elman method. It has been established that MIA-induced OA disturbed oxidative-antioxidant balance of the rat serum: the content of the products of oxidative modification of proteins increases and the content of sulfhydryl groups decreases in the serum. It was shown that with the long-term administration of multiprobiotics in animals with MIA-induced OA, the above indicators were restored.

Keywords


monoiodoacetate-induced osteoarthritis, multiprobiotic, oxidative modification of proteins, blood serum

Full Text:

PDF>PDF

References


O'Neill T. W., McCabe P. S., McBeth J. Update on the epidemiology, risk factors and disease outcomes of osteoarthritis // Best Pract Res Clin Rheumatol. 2018 Apr; 32(2):312-326. doi: 10.1016/j.berh.2018.10.007.

Hunter D.J., Bierma-Zeinstra S. Osteoarthritis // Lancet. 2019 Apr 27;393(10182):1745-1759. doi: 10.1016/S0140-6736(19)30417-9.

Vitetta L., Coulson S., Linnane A.W., Butt H. The gastrointestinal microbiome and musculoskeletal diseases: a beneficial rolefor probiotics and prebiotics // Pathogens. 2013 Nov 14;2(4):606-26. doi: 10.3390/pathogens2040606.

Baragi V.M., Becher G., Bendele A.M., et al. A new class of potent matrix metalloproteinase 13 inhibitors for potential treatment of osteoarthritis: Evidence of histologic and clinical efficacy without musculoskeletal toxicity in rat models // Arthritis. Rheum. – 2009. – Vol. 60(7). – P. 2008-2018.

Dubinina E. E., Burmistrov S.O., Hodov D.A., Porotov I.G. Okislitelnyie modifikatsii belkov syivorotki krovi cheloveka, metod ee opredeleniya // Voprosyi meditsinskoy himii. – 1995. – № 1. – С. 24–26. Available from: http://pbmc.ibmc.msk.ru/index.php/ru/article/PBMC-1995-41-1-24-ru

Ellman G. Tissue sulfhydryl groups / G. Ellman // Arch. Biochem. Biophys. – 1959. – Vol. 82, № 1. – P. 70–77. Available from: http://aufsi.auburn.edu/recommendedmethods/01B06.pdf/

Lugrin J., Rosenblatt-Velin N., Parapanov R., Liaudet L. The role of oxidative stress during inflammatory processes // Biol Chem. 2014 Feb; 395(2): 203-30. doi: 10.1515/hsz-2013-0241.

Drevet S., Gavazzi G., Grange L. et al. Reactive oxygen species and NADPH oxidase 4 involvement in osteoarthritis // Exp. Gerontol. – 2018. – Vol. 111. – P. 107-117. Available from: http://www.ncbi.nlm.nih.gov

Dahl J.U., Gray M.J., Jakob U. Protein quality control under oxidative stress conditions // J. Mol. Biol. 2015. – Vol. 427, №7. – P. 1549-1563. Available from: http://www.ncbi.nlm.nih.gov

Pajares M., Jiménez-Moreno N., Dias I.H. et al. Redox control of protein degradation // Redox. Biol. – 2015. – Vol. 6. – P. 409-420. Available from: http://www.ncbi.nlm.nih.gov/

Breusing N., Grune T. Biomarkers of protein oxidation from a chemical, biological and medical point of view // Exp. Gerontol. – 2010. – Vol. 45, № 10. – P. 733–737. Available from: http://www.ncbi.nlm.nih.gov/

Vázquez-Torres A. Redox active thiol sensors of oxidative and nitrosative stress // Antioxid. Redox. Signal. – 2012. – Vol. 17, № 9. – P. 1201–1214. Available from: http://www.ncbi.nlm.nih.gov.

Meyer A. Glutathione homeostasis and redox-regulation by sulfhydryl groups / A. Meyer, R. Hell // Photosynth. Res. – 2005. – Vol. 86. – P. 435–457. Available from: http://www.ncbi.nlm.nih.gov.

Davies M. J. Protein oxidation and peroxidation // Biochem. J. 2016 Apr 1; 473(Pt 7): 805–825. doi: 10.1042/BJ20151227.

Domingues R. M., Domingues P., Melo T. et al. Lipoxidation adducts with peptides and proteins: deleterious modifications or signaling mechanisms? // J. Proteomics. – 2013. – Vol. 92. – P. 110-131. Available from: http://www.ncbi.nlm.nih.gov.

Vplyv okysnoho stresu na riven ekspresii heniv TGF–β i HGF u pechintsi shchuriv v umovakh tryvaloi shlunkovoi hipokhlorhidrii ta za vvedennia multyprobiotyka Cymbiter / K. O. Dvorshchenko [et al.] // Ukr. biokhim. zhurn. – 2013. – Т. 85, № 5. – С. 114–123.

Azad M.A.K., Sarker M., Wan D. Immunomodulatory effects of probiotics on cytokine profiles // Biomed. Res. Int. – 2018:8063647. doi: 10.1155/2018/8063647.

Probiotics prevent intestinal barrier dysfunction in acute pancreatitis in rats via induction of ileal mucosal glutathione biosynthesis / F. Lutgendorff [et al.] // PLoS ONE. – 2009. – Vol. 4, № 2. – P. e4512.

Received: 06.03.2019

Revised: 08.04.2019

Signed for the press: 08.04.2019




DOI: http://dx.doi.org/10.17721/1728_2624.2019.26.50-54

Refbacks

  • There are currently no refbacks.


Лицензия Creative Commons
This journal is available according to the Creative Commons License «Attribution» («Атрибуція») 4.0 Global (CC-BY).