The effects of melatonin administration in determined times of day on the kidney in rats with high-calorie diet-induced obesity

O. Kalmukova, T. Kushmyruk, M. Dzerzhynsky
Taras Shevchenko National University of Kyiv, Kyiv; Taras Shevchenko National University of Kyiv, Kyiv; Taras Shevchenko National University of Kyiv, Kyiv


Kidneys, like the cardiovascular system, are one of the main target organs, the most vulnerable to obesity, because the first take on the metabolism correction function at an increasing excess of fat tissue in the body. Kidney affection under obesity is a multifactorial thing that is caused by a number of processes, including inflammation, oxidative stress, lipid metabolism disorders, renin-angiotensin-aldosterone system activation, insulin resistance and other factors. An optimal candidate for
reducing the harmful effects of kidneys obesity should be a compound that simultaneously exhibits anti-inflammatory and antioxidant properties, controls the circadian rhythm, and also affects on the adipokines secretion. The molecule that meets these conditions is melatonin.The aim of our study was to determine morpho-functional state (morphology characteristic of kidney glomeruli and tubules; morphometric parameters: area and density of glomeruli) of kidney in rats with high-calorie (high fat) diet-induced obesity after melatonin administration in determined time of the day. Melatonin was  administered daily by gavage for 7 weeks in dose 30 mg/kg 1 h before lights-off (ZT11) rats with high-calorie diet (HCD). Rats with HCD had huge changes in kidney morphology, which manifested in presence of numerous mesangial cells outside glomeruli and lipid droplets in tubules epithelial cells, while area and density of glomeruli in cm2 decrease. In general kidney with above mentioned characteristic from HCD rats lose their ability to conduct strongly renal function. After melatonin used in rats with HCD arise leveling of pathological changes, which associated with consumption of HCD. Namely, in rats with development obesity
melatonin administrations led to increase area and density in comparison to HCD group, moreover glomeruli density reach control values. This is suggest that melatonin have protecting effect against glomerular degeneration. In conclusions, melatonin influence on kidney morpho-functional state in rats with HCD and turn back pathological its changes, moreover evening administration can use for obesity therapy via its strong action on conservation glomerular morphology.


melatonin, obesity, chronotherapy, kidney, high-fat diet, glomeruli

Full Text:



The official data of the WHO Bulletin published in May 2017. Available from:

Chen H. M., Chen Y., Zhang Y. D., Zhang P. P., Chen H. P., Wang Q. W., et al. Evaluation of metabolic risk marker in obesity-related glomerulopathy. Journal of Renal Nutrition. 2011; 21(4): 309-315.

Jeffrey L., Martin M. Obesity-Related Hypertension and Other Renal issues. J. Lancaster General Hospital. 2010; 5(1): 14-15.

Redon J., Lurbe E. The kidney in obesity. Current hypertension reports. 2015;17(6): 43.

Garofalo C., Borrelli S., Minutolo R., Chiodini P., De Nicola L., Conte G. A systematic review and meta-analysis suggests obesity predicts onset of chronic kidney disease in the general population. Kidney international. 2017;91(5): 1224-1235.

She M., Laudon M., Yin W. Melatonin receptors in diabetes: a potential new therapeutical target?. European journal of pharmacology. 2014; 744: 220-223.

Tokonami N., Mordasini D., Pradervand S., Centeno G., Jouffe C., Maillard M., et al. Local renal circadian clocks control fluid–electrolyte homeostasis and BP. Journal of the American Society of Nephrology. 2014; 25(7): 1430-1439.

Stacchiotti A., Nardo L., Rizzoni D., Rezzani R., Reiter R. J. Melatonin drives beneficial Sirtuin 1 expression in leptin-deficient mice liver through MT1 receptor. Italian Journal of Anatomy and Embryology. 2015; 120(1): 70.

Khoshvakhti H., Yurt K. K., Altunkaynak B. Z., Türkmen A. P., Elibol E., Aydın I., et al. Effects of melatonin on diclofenac sodium treated rat kidney: a stereological and histopathological study. Renal failure. 2015; 37(8): 1379-1383.

Baltatu O. C., Amaral F. G., Campos L. A., Cipolla-Neto J. Melatonin, mitochondria and hypertension. Cellular and molecular life sciences. 2017; 74(21): 3955-3964.

Selfridge J. M., Gotoh T., Schiffhauer S., Liu J., Stauffer P. E., Li A., et al. Chronotherapy: intuitive, sound, founded…but not broadly applied. Drugs. 2016; 76(16): 1507-1521.

Münch M., Kramer A. Timing matters: new tools for personalized chronomedicine and circadian health. Acta Physiologica. 2019; e13300.

Sulli G., Manoogian E. N., Taub P. R., Panda S. Training the circadian clock, clocking the drugs, and drugging the clock to prevent, manage, and treat chronic diseases. Trends in pharmacological sciences. 2018.

Halenova T., Raksha N., Vovk T., Savchuk O., Ostapchenko L., Prylutskyy Y., et al. Effect of C60 fullerene nanoparticles on the dietinduced obesity in rats. International journal of obesity (2005). 2018; 42 (12): 1987-1998.

Eknoyan G. Obesity and chronic kidney disease. Nefrología (English Edition). 2011; 31(4): 397-403.

Ahn S. Y., Kim D. K., Han S. S., Park J. H., Shin S. J., Lee S. H., et al. Weight loss has an additive effect on the proteinuria reduction of angiotensin II receptor blockers in hypertensive patients with chronic kidney

disease. Kidney research and clinical practice. 2018; 37(1): 49.

Khamaisi M., Flyvbjerg A., Haramati Z., Raz G., Wexler I. D., Raz I. Effect of mild hypoinsulinemia on renal hypertrophy: growth hormone/insulin-like growth factor I system in mild streptozotocin diabetes. Journal of Diabetes Research. 2002; 3 (4): 257-264.

Sarafidis P. A., Ruilope L. M. Insulin resistance, hyperinsulinemia, and renal injury: mechanisms and implications. American journal of nephrology. 2006; 26(3): 232-244.

Higgins S. P., Tang Y., Higgins C. E., Mian B., Zhang W., Czekay R. P.,et al. TGF-β1/p53 signaling in renal fibrogenesis. Cellular signalling. 2018; 43: 1-10.

Ma S., Zhu X. Y., Eirin A., Woollard J. R., Jordan K. L., Tang H., et al. Perirenal fat promotes renal arterial endothelial dysfunction in obese swine through tumor necrosis factor-α. The Journal of urology. 2016; 195 (4 Part 1): 1152-1159.21. Huang J., Rajapakse A., Xiong Y., Montani J. P., Verrey F., Ming X. F., et al. Genetic targeting of arginase-ii in mouse prevents renal oxidative stress and inflammation in diet-induced obesity. Frontiers in physiology. 2016; 7: 560.

Wang C., Luo Z., Kohan D., Wellstein A., Jose P. A., Welch W. J., et al. Thromboxane prostanoid receptors enhance contractions, endothelin-1, and oxidative stress in microvessels from mice with chronic kidney disease. Hypertension. 2015; 65(5): 1055-1063.

Zanatta C. M., Crispim D., Sortica D. A., Klassmann L. P., Gross J. L., Gerchman F., et al. Endothelin-1 gene polymorphisms and diabetic kidney disease in patients with type 2 diabetes mellitus. Diabetology & metabolic syndrome. 2015; 7(1): 103.

Abitbol C. L., Chandar J., Rodríguez M. M., Berho M., Seeherunvong W., Freundlich M., et al. Obesity and preterm birth: additive risks in the progression of kidney disease in children. Pediatric Nephrology.2009; 24(7): 1363.

Briffa J. F., McAinch A. J., Poronnik P., Hryciw D. H. Adipokines as a link between obesity and chronic kidney disease. American Journal of Physiology-Renal Physiology. 2013; 305(12): F1629-F1636.

Young C. N., Morgan D. A., Butler S. D., Mark A. L., Davisson R. L. The brain subfornical organ mediates leptin-induced increases in renal sympathetic activity but not its metabolic effects. Hypertension. 2013; 61(3): 737-744.

Felizardo R. J. F., da Silva M. B., Aguiar C. F., Câmara N. O. S. Obesity in kidney disease: a heavyweight opponent. World journal of nephrology. 2014; 3(3): 50.

Declèves A. E., Zolkipli Z., Satriano J., Wang L., Nakayama T., Rogac M., et al. Regulation of lipid accumulation by AMK-activated kinase in high fat diet–induced kidney injury. Kidney international. 2014; 85(3): 611-623.

Naumnik B., Mysliwiec M. Renal consequences of obesity. Medical Science Monitor. 2010; 16(8): 163-170.

Nasrallah M. P., Ziyadeh F. N. Overview of the physiology and pathophysiology of leptin with special emphasis on its role in the kidney. In Seminars in nephrology. 2013; 33(1): 54-65.

Yurt K. K., Kayhan E., Altunkaynak B. Z., Tümentemur G., Kaplan S. Effects of the melatonin on the kidney of high fat diet fed obese rats: a stereological and histological approach. J Exp Clin Med. 2013; 30: 153-158.

Rajan T., Barbour S. J., White C. T., Levin A. Low birth weight and nephron mass and their role in the progression of chronic kidney disease: a case report on identical twins with Alport disease. Nephrology Dialysis Transplantation. 2011; 26(12): 4136-4139.

Winiarska K., Dzik J. M., Labudda M., Focht D., Sierakowski B., Owczarek A., et al. Melatonin nephroprotective action in Zucker diabetic fatty rats involves its inhibitory effect on NADPH oxidase. Journal of pineal research. 2016; 60(1): 109-117.

Stacchiotti A., Favero G., Giugno L., Lavazza A., Reiter R. J., Rodella L. F., et al. Mitochondrial and metabolic dysfunction in renal convoluted tubules of obese mice: protective role of melatonin. PloS one. 2014; 9(10): e111141.

Aperis G., Prakash P., Paliouras C., Papakonstantinou N., Alivanis P. The role of melatonin in patients with chronic kidney disease undergoing haemodialysis. Journal of renal care. 2012; 38(2): 86-92.

Russcher M., Koch B., Nagtegaal E., van der Putten K., ter Wee P., Gaillard C. The role of melatonin treatment in chronic kidney disease. Front Biosci (Landmark Ed). 2012; 17: 2644-56.

Hariri N., Thibault L. High-fat diet-induced obesity in animal models. Nutrition research reviews. 2010; 23(2): 270-299.

Hussein M. R., Ahmed O. G., Hassan A. F., Ahmed M. A. Intake of melatonin is associated with amelioration of physiological changes, both metabolic and morphological pathologies associated with obesity: an animal model. International journal of experimental pathology. 2007; 88(1): 19-29.

Doddigarla Z., Parwez I., Abidi S., Ahmad J. (). Effect of Chromium Picolinate and Melatonin either in Single or in a Combination in Alloxan Induced Male Wistar Rats. Journal of Biomedical Sciences. 2016; 6: 1-7.

Elbe H., Vardi N., Esrefoglu M., Ates B., Yologlu S., Taskapan C. Amelioration of streptozotocin-induced diabetic nephropathy by melatonin, quercetin, and resveratrol in rats. Human & experimental toxicology. 2015; 34(1): 100-113.

Kaur G., Gan Y. L., Phillips C. L., Wong K., Saini B. Chronotherapy in practice: the perspective of the community pharmacist. International journal of clinical pharmacy. 2016; 38(1): 171-182.

Received: 06.03.2019

Revised: 08.04.2019

Signed for the press: 08.04.2019



  • There are currently no refbacks.

Лицензия Creative Commons
This journal is available according to the Creative Commons License «Attribution» («Атрибуція») 4.0 Global (CC-BY).