The effects of different mode of melatonin administration on the development of high-calorie diet-induced obesity in rats

O. Kalmykova, A. Yurchenko, M. Dzerzhinsky
Taras Shevchenko National University of Kyiv, Kyiv; Taras Shevchenko National University of Kyiv, Kyiv; Taras Shevchenko National University of Kyiv, Kyiv


Currently, opportunities for the melatonin use in the obesity treatment are being studied because of his action on the:
normalization of adipocyte secretion, the reduction of the pro-inflammatory state in adipose tissue, the stimulation of the beige
adipocytes appearance, modulation of the eating behavior via influence on hypothalamic signals, and thermoregulation through
affecting on brown adipocyte function, however, the mode, pathways and dose levels of the administration require detailed
research. The aim of our study was to determine the influence of melatonin different time and mode treatment on body weight
changes of diet-induced (high-calorie diet, HCD) obesity in rats. Melatonin was administered daily by gavage for 7 weeks in dose
30 mg/kg either 1 h after lights-on (ZT01) or 1 h before lights-off (ZT11) or continuously with drinking water (HCD water).
Parameters, including weight gain, weight gain rate, body mass index, Lee index, related visceral fat weight, relative daily food
and water consumption, were measured. Melatonin use significantly reduce weight gain rate in HCD ZT11 and HCD water group
in 2 and 2,5 times; Lee index – by 6,6 % and 7,3 %; related visceral fat mass – by 38,5 %, respectively in compare with HCD.
Animals without HCD which obtain melatonin did not change observed parameters, accept relative visceral fat mass (it was
decreased in rely to control). The effects of different modes melatonin administration manifested in decrease weight gain rate,
Lee index and relative visceral fat mass in rats with diet-induced obesity only after evening administration, as well as after
delivery continuously with drinking water without any effect on food and water consumption.


melatonin, obesity, high-fat diet, chronobiology, visceral adipose tissue mass

Full Text:



Dardente, H. Melatonin‐dependent timing of seasonal reproduction by the pars tuberalis: pivotal roles for long daylengths and thyroid hormones. Journal of neuroendocrinology. 2012; 24(2): 249-266.

Jiménez-Aranda A., Fernández-Vázquez G., Campos D., Tassi M., VelascoPerez L., Tan D. X. et al. Melatonin induces browning of inguinal white adipose tissue in Zucker diabetic fatty rats. Journal of pineal research. 2013; 55(4): 416-423.

Boström P., Wu J., Jedrychowski M. P., Korde A., Ye L., Lo J. C., et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012; 481(7382): 463.

Brestoff J. R., Kim B. S., Saenz S. A., Stine R. R., Monticelli L. A., Sonnenberg G. F., et al. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature. 2015;519(7542): 242.

Chung K. J., Chatzigeorgiou A., Economopoulou M., Garcia-Martin R., Alexaki V. I., Mitroulis I., et al. A self-sustained loop of inflammation-driven inhibition of beige adipogenesis in obesity. Nature immunology. 2017;18(6): 654.

Ohyama K., Nogusa Y., Shinoda K., Suzuki,K., Bannai M., Kajimura S. A synergistic anti-obesity effect by a combination of capsinoids and cold temperature through promoting beige adipocyte biogenesis. Diabetes. 2016; db150662.

McQueen A. E., Koliwad S. K., Wang J. C. Fighting obesity by targeting factors regulating beige adipocytes. Current Opinion in Clinical Nutrition & Metabolic Care. 2018; 21(6): 437-443.

Kalra S. P., Bagnasco M., Otukonyong E. E., Dube M. G., Kalra P. S. Rhythmic, reciprocal ghrelin and leptin signaling: new insight in the development of obesity. Regulatory peptides. 2003; 111(1-3): 1-11.

Engin A. Circadian Rhythms in Diet-Induced Obesity. In: Engin A., Engin A. (eds) Obesity and Lipotoxicity. Advances in Experimental Medicine and Biology. 2017; vol 960. Springer, Cham

Prunet-Marcassus B., Desbazeille M., Bros A., Louche K.,Delagrange P., Renard P. et al. Melatonin reduces body weight gain in Sprague Dawley rats with diet-induced obesity. Endocrinology. 2003; 144(12): 5347-5352.

Song Y., Chen M. Effects of melatonin administration on plasma leptin concentration and adipose tissue leptin secretion in mice. Acta Biologica Hungarica. 2009; 60(4): 399-407.

Witt-Enderby P. A., Bennett J., Jarzynka M. J., Firestine S., Melan M. A. Melatonin receptors and their regulation: biochemical and structural mechanisms. Life sciences. 2003; 72(20): 2183-2198.

Masana M. I., Witt-Enderby P. A., Dubocovich M. L. Melatonin differentially modulates the expression and function of the hMT1 and hMT2 melatonin receptors upon prolonged withdrawal. Biochemical pharmacology. 2003; 65(5): 731-739.

Jarzynka M. J., Passey D. K., Johnson D. A., Konduru, N. V., Fitz N. F., Radio N. M., et al. Microtubules modulate melatonin receptors involved in phase-shifting circadian activity rhythms: in vitro and in vivo evidence. Journal of pineal research. 2009; 46(2): 161-171.

Ren W., Liu G., Chen S., Yin J., Wang J., Tan B., et al. Melatonin signaling in T cells: Functions and applications. Journal of pineal research. 2017; 62(3): e12394.

Mauriz J. L., Collado P. S., Veneroso C., Reiter R. J., González-Gallego J. A review of the molecular aspects of melatonin's antiinflammatory actions: recent insights and new perspectives. Journal of pineal research. 2013; 54(1): 1-14.

Tahan G., Gramignoli R., Marongiu F., Aktolga S., Cetinkaya A., Tahan V., et al. Melatonin expresses powerful anti-inflammatory and antioxidant activities resulting in complete improvement of acetic-acid-induced colitis in rats. Digestive diseases and sciences. 2011; 56(3): 715-720.

Agil, A., Rosado, I., Ruiz, R., Figueroa, A., Zen, N., & Fernández‐Vázquez, G. Melatonin improves glucose homeostasis in young Zucker diabetic fatty rats. Journal of pineal research. 2012; 52(2): 203-210.

Zulet M. A., Puchau B., Navarro C., Marti A., Martínez J. A. Inflammatory biomarkers: the link between obesity and associated pathologies. Nutrición hospitalaria. 2007; 22(5): 511-527.

Aydin M., Canpolat S., Kuloğlu T., Yasar A., Colakoglu N., Kelestimur H. Effects of pinealectomy and exogenous melatonin on ghrelin and peptide YY in gastrointestinal system and neuropeptide Y in hypothalamic arcuate nucleus: immunohistochemical studies in male rats. Regulatory peptides. 2008; 146(1-3): 197-203.

Piccinetti C. C., Migliarini B., Olivotto I., Coletti G., Amici A., Carnevali O. Appetite regulation: the central role of melatonin in Danio rerio. Hormones and behavior. 2010; 58(5): 780-785.

Fischer C., Mueller T., Pfeffer M., Wicht H., von Gall C., Korf H. W. Melatonin Receptor 1 Deficiency Affects Feeding Dynamics and Pro-Opiomelanocortin Expression in the Arcuate Nucleus and Pituitary of Mice. Neuroendocrinology. 2017;105(1): 35-43.

Wei Y. M., Xu Y., Yu C. X., Han J. Melatonin enhances the expression of beta-endorphin in hypothalamic arcuate nucleus of morphinedependent mice. Sheng Li Xue Bao. 2009; 61: 255-62.

Ríos-Lugo M. J., Jiménez-Ortega V., Cano-Barquilla P., Mateos P. F., Spinedi E. J., Cardinali D. P. et al. Melatonin counteracts changes in hypothalamic gene expression of signals regulating feeding behavior in high-fat fed rats. Hormone molecular biology and clinical investigation. 2015; 21(3): 175-183.

Alamdari N. M., Mahdavi R., Roshanravan N., Yaghin N. L., Ostadrahimi A. R., Faramarzi E. A double-blind, placebo-controlled trial related to the effects of melatonin on oxidative stress and inflammatory parameters of obese women. Hormone and Metabolic Research. 2015; 47(07): 504-508.

Szewczyk-Golec K., Rajewski P., Gackowski M., MilaKierzenkowska C., Wesołowski R., Sutkowy P., et al. Melatonin

supplementation lowers oxidative stress and regulates adipokines in obese patients on a calorie-restricted diet. Oxidative medicine and cellular longevity, 2017.

Laitinen J. T., Castren E., Vakkuri O., Saavedra J. M. Diurnal rhythm of melatonin binding in the rat suprachiasmatic nucleus. Endocrinology. 1989; 124(3): 1585-1587.

Acuña‐Castroviejo D., Reiter R. J., Menendez‐Pelaez A., Pablos M. I., Burgos A. Characterization of high‐affinity melatonin binding sites in purified cell nuclei of rat liver. Journal of pineal research. 1994; 16(2): 100-112.

Dallmann R., Brown S. A., Gachon F. Chronopharmacology: new insights and therapeutic implications. Annual review of pharmacology and toxicology. 2014; 54: 339-361.

McKenna H., van der Horst G. T., Reiss I., Martin D. Clinical chronobiology: a timely consideration in critical care medicine. Critical Care. 2018; 22(1):124.

Dyar K. A., Eckel-Mahan K. L. Circadian metabolomics in time and space. Frontiers in neuroscience. 2017;11: 369.

Kalmukova O., Pustovalov A., Vareniuk I., Dzerzhynsky M. Effect of melatonin different time administration on the development of dietinduced obesity in rats. Bulletin of Taras Shevchenko National University of Kyiv-Problems of Physiological Functions Regulation. 2018; 23(2): 20-27.

Shen X. H., Tang Q. Y., Huang J., Cai W. Vitamin E regulates adipocytokine expression in a rat model of dietary-induced obesity. Experimental biology and medicine. 2010; 235(1): 47-51.

Bernardis L. L., Patterson B. D. Correlation between 'Lee index' and carcass fat content in weanling and adult female rats with hypothalamic lesions. Journal of Endocrinology. 1968;40(4): 527-528.

Bourgeois F., Alexiu A., Lemonnter D. Dietary-induced obesity: effect of dietary fats on adipose tissue cellularity in mice. British Journal of Nutrition.1983; 9(1): 17-26.

Woods S. C., Seeley R. J., Rushing P. A., D'Alessio D., Tso P. A controlled high-fat diet induces an obese syndrome in rats. The Journal of nutrition. 2003; 133(4): 1081-1087.

Hariri N., Thibault L. High-fat diet-induced obesity in animal models. Nutrition research reviews. 2010; 23(2): 270-299.

Kalmukova O., Dzerzhіnsky M. Е. The effects of different time of melatonin administration on differentiation and functional status of the brown adipocytes in vivo, Cell and Organ Transplantology. 2018, 6 (1): 80-85.

Tan D. X., Manchester L. C., Fuentes‐Broto L., Paredes S. D., Reiter R. J. Significance and application of melatonin in the regulation of brown adipose tissue metabolism: relation to human obesity. Obesity Reviews. 2011; 12(3): 167-188.

Hatzis G., Ziakas P., Kavantzas N., Triantafyllou A., Sigalas P., Andreadou I., et al. Melatonin attenuates high fat diet-induced fatty liver disease in rats. World journal of hepatology. 2013; 5(4): 160.

Sun H., Wang X., Chen J., Song K., Gusdo, A. M., Li L., et al. Melatonin improves non-alcoholic fatty liver disease via MAPK-JNK/P38 signaling in high-fat-diet-induced obese mice. Lipids in health and disease. 2016; 15(1): 202.

Kitagawa A., Ohta Y., Ohashi K. Melatonin improves metabolic syndrome induced by high fructose intake in rats. Journal of pineal research. 2012; 52(4): 403-413.

e Silva A. C. P., dos Santos M. J., Koike B. D. V., Moreira M. S. A., Gitai,D. L. G., de Miranda Coelho J. A. P., et al.Melatonin receptor 1B−1193T> C polymorphism is associated with diurnal preference and sleep habits. Sleep Medicine. 2018;

Rasmussen D. D., Boldt B. M., Wilkinson C., Yellon S. M., Matsumoto A. M. Daily melatonin administration at middle age suppresses male rate visceral fat, plasma leptin, and plasma insulin to youthful levels. Endocrinology. 1999; 140(2): 1009-1012.

Wolden-Hanson T., Mitton D. R., McCants R. L., Yellon S. M., Wilkinson C. W., Matsumoto A. M., et al. Daily melatonin administration to middle-aged male rats suppresses body weight, intraabdominal adiposity, and plasma leptin and insulin independent of food intake and total body fat. Endocrinology. 2000;141(2): 487-497.

Zhou J., Wang D., Luo X., Jia X., Li M., Laudon M., et al. Melatonin Receptor Agonist Piromelatine Ameliorates Impaired Glucose Metabolism in Chronically Stressed Rats Fed a High-Fat Diet. Journal of Pharmacology and Experimental Therapeutics. 2018; 364(1): 55-69.

Bermejo-Millo J. C., Guimarães M. R. M., de Luxán-Delgado B., Potes Y., Pérez-Martínez Z., Díaz-Luis A., et al. High-Fructose Consumption Impairs the Redox System and Protein Quality Control in the Brain of Syrian Hamsters: Therapeutic Effects of Melatonin. Molecular neurobiology. 2018; 1-14.

Cano Barquilla P., Pagano E. S., Jiménez‐Ortega V., Fernández‐Mateos P., Esquifino,A. I., Cardinali,D. P. Melatonin normalizes clinical and biochemical parameters of mild inflammation in diet‐induced metabolic syndrome in rats. Journal of pineal research. 2014; 57(3): 280-290.

Received in the editorial: 24.09.2018

Received the revised version: 25.10.2018

Signed for press: 25.10.2018


  • There are currently no refbacks.

Лицензия Creative Commons
This journal is available according to the Creative Commons License «Attribution» («Атрибуція») 4.0 Global (CC-BY).