The influence of cerium oxide nanocrystal (nanoceria) on full-thickness wound healing process in rats

Arefeh Amiri, T. Beregova, N. Nikitina, L. Stepanova
ESC "Institute of Biology and Medicine" Taras Shevchenko National University of Kyiv, Kyiv; ESC "Institute of Biology and Medicine" Taras Shevchenko National University of Kyiv, Kyiv; ESC "Institute of Biology and Medicine" Taras Shevchenko National University of Kyiv, Kyiv; ESC "Institute of Biology and Medicine" Taras Shevchenko National University of Kyiv, Kyiv

Abstract


This work examines the effect of Cerium Dioxide Nanocrystal (Nanoceria) on healing process of full-thickness excisional wounds in rats. Rapid and effective wound healing requires a coordinated cellular response. Wound healing is a complex process in which the skin repairs itself after injury and replacing of devitalized and missing cellular structures, and tissue layers takes place. In the absence of underlying disease, almost every full-thickness wound will heal with minimal intervention; however, the process can be enhanced by judicious wound management and knowledge of wound healing principles and practices.
Wound care encourages and speeds wound healing via cleaning and protection from re-injury or infection. Timing is important to wound healing. Critically, the timing of wound reepithelization can affect the outcome of the healing. Selection of an appropriate and efficient wound dressing material plays a key role. We have shown that a simple topical application of Nanoceria significantly
reduces the timing of the healing process comparing to the untreated rats. In the present study, cerium oxide (CeO2) nanoparticles were incorporated into Carbopol / gelatin films in order to develop a potential wound dressing material. The wound dressings were prepared by electrospinning. The film containing 0.05 % CeO2 (dissolved in 0.5 % Carbopol) nanoparticles was chosen as the optimal dressing for the in vivo study on full-thickness excisional wounds of rats. The study showed that after 2 weeks the wounds treated with the CeO2 nanoparticle-containing dressing achieved a significant closure to nearly 100 %. In the model of full-thickness skin wound, the complete wound closure in the control group of animals occurred on the 23.0 ± 0.8 day while in experimental group the time of full repair decreased by 13.0 % compared to the control and was equal to 20.0 ± 0.5 day. Thus, our results provide evidence supporting the possible applicability of CeO2 nanoparticle-containing wound dressing for a successful wound treatment as it accelerates complete wound closure and reduced wound area in comparison with non-treated animals.


Keywords


Cerium dioxide nanocrystal, full-thickness Wound

Full Text:

PDF>PDF

References


Penn J., Grobbelaar A., Rolfe K.. The role of the TGF-β family in wound healing, burns and scarring: a review. Int J Burn Trauma 2012; 2(1): 18-28.

Wilgus T., Bergdall V., Tober K., Hill K., Mitra S., Flavahan N., Oberyszyn T. The impact of cyclooxygenase-2 mediated inflammation on scarless fetal wound healing. American Journal of Pathology 2004; 165(3): 753-761.

Schneider J., Holvanahalli R., Helm P., Goldstein R., Kowalske K. Contractures in burn injury: defining the problem. J Burn Care Res 2006; 27: 508-514.

Alekseev A., Bobrovnikov A. Local Conservative Therapy of Burns. Moscow, 2015: 207 (Russian)

Zholobak N., Shcherbakov A., Vitukova E., Yegorova A., Scripinets Yu., Leonenko I., Baranchikov A., Antonovich V., Ivanov V. Direct monitoring of the ROS-cerium dioxide nanoparticles interaction in living cells. RSC

Adv. 2014;(4):51,703-51,710. doi: 10.1039 / C4RA08292C.

Ivanov V., Shcherbakov A., Baranchikov A., Kozik V. Nanocrystalline Ceria: Properties, Production, Application. Tomsk, 2013. (Russian).

Shcherbakov A., Zholobak N., Spivak N., Ivanov V. Advances and Prospects of Using Nanocrystalline Ceria in Cancer Theranostics. Russ. J. Inorg. Chem. 2014;59(13):1556-1575.

Zholobak N., Shcherbakov A., Bogorad-Kobelska A., Ivanova O., Baranchikov A., Spivak N., Ivanov V. Panthenol-stabilized cerium dioxide nanoparticles for cosmeceutic formulations against ROS-induced and UV-induced damage. J. Photochem. Photobiol. B. 2014;130:102-108. doi: 10.1016 / j. jphotobiol.2013.10.015.

Allgöwer M., Schoenenberger G., Sparkes B. Burning the largest immune organ. Burns. 1995;21 Suppl. 1: 7-47.

Karakoti A., Singh S., Dowding J., Seal S., Self W. Redox-active radical scavenging nanomaterials. Chem Soc Rev 2010: 4422-32.

Korsvik C., Patil S., Seal S., Self W. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun 2007: 1056-8.

Pirmohamed T., Dowding J., Singh S., Wasserman B., Heckert E., Karakoti A. et al. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun 2010:2736-38.

Xue Y., Luan Q., Yang D., Yao X., Zhou K. Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles. J Phys Chem C 2011;115.

Dowding J., Dosani T., Kumar A., Seal S., Self W. Cerium oxide nanoparticles scavenge nitric oxide radical ([radical dot]NO). Chem Commun 2012: 48.

Tarnuzzer R., Colon J., Patil S., Seal S. Vacancy engineered ceria nano- structures for protection from radiation-induced cellular damage. Nano Lett 2005:2573-7.

Chen J., Patil S., Seal S., McGinnis J. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol 2006:142-50.

Cai X., Sezate S., Seal S., McGinnis J. Sustained protection against photoreceptor degeneration in tubby rat by intravitreal injection of nanoceria. Biomaterials 2012: 8771-81.

Das M., Patil S., Bhargava N., Kang J., Riedel L., Seal S. et al. Autocatalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Bioma- terials 2007:

Hirst S., Karakoti A., Tyler R., Sriranganathan N., Seal S., Reilly C. Anti-inflammatory properties of cerium oxide nanoparticles. Small 2009;5:2848e56.

Das S., Singh S., Dowding J., Oommen S., Kumar A., Sayle T. et al. The induction of angiogenesis by cerium oxide nanoparticles through the modulation of oxygen in intracellular environments. Biomaterials 2012;33:7746e55.

Deshpande S., Patil S.,Kuchibhatla S., Seal S. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl. Phys. Lett. 87 (2005) 133113.

Das S., Dowling J., Klump K., McGinnis J., Self W., Seal S. Cerium oxide nanoparticles: Applications and prospects in nanomedicine, Nanomedicine 8(9) (2013) 1483-1508

Buettner G. Superoxide dismutase in redox biology: the roles of superoxide and hydrogen peroxide. Anticancer Agent Med. Chem. 11, 341–346 (2011).

Tan F., Zhang Y., Wang J., Wei J., Cai Y., Qian X. H. An efficient method for dephosphorylation of phosphopeptides by cerium oxide. J. Mass Spectrom. 43,628–632 (2008).

Patil A., Kumar R., Barron N., Mann S. Cerium oxide nanoparticlemediated self-assembly of hybrid supramolecular hydrogels. Chem. Commun. 48,7934–7936 (2012).

Pirmohamed T., Dowding J., Singh S., Wasserman B., Heckert E., Karakoti A., King J., Seal S., Self W. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. 46, 2736–2738 (2010).

Dowding J., Dosani T., Kumar A., Seal S., Self, W. Cerium oxide nanoparticles scavenge nitric oxide radical ((NO)-N-center dot. Chem. Commun. 48, 4896–4898 (2012).

Asati A., Santra S., Kaittanis C., Perez J. Surface-chargedependent cell localization and cytotoxicity of cerium oxide nanoparticles, ACS nano 4 (9) (2010) 5321–5331.

Tarnuzzer R., Colon J., Patil S., Seal S. Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage, Nano Lett. 5 (12) (2005) 2573–2577.

Giri S., Karakoti A., Graham R., Maguire J., Reilly C., Seal S., Rattan R., Shridhar V. Nanoceria: a rare-earth nanoparticle as a novel anti-angiogenic therapeutic agent in ovarian cancer, PLoS One 8 (1) (2013) e54578.

Kanegaye JT. A rational approach to the outpatient management of lacerations in pediatric patients. Curr Probl Pediatr 1998; 28:205.

McNamara R., Loiselle J. Laceration repair. In: Henretig F, King C, editors. Textbook of pediatric emergency procedures. Baltimore7 Williams and Wilkins; 1997. p. 1141.

Piacquadio D. Synthetic surgical dressings. In: Wheeland RG, editor. Cutaneous surgery. WB Saunders Company, 1994. p. 122 – 36.

Glat P., Longaker M. Wound healing. In: Aston SJ, Beasley RW, Thorne CH, editors. Grabb and Smith's plastic surgery. 5th ed. Philadelphia7 Lippencott; 1997. p. 3 – 12.

Korsvik C., Patil S., Seal S., Self W. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun 2007: 1056e8.

Singh S., Kumar A., Karakoti A., Seal S., Self W. Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles. Mol Bio-syst 2010;6:1813e20.

Chigurupati S. et al., Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing,Biomaterials(2012),

Heckert E., Karakoti A., Seal S., Self W. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 2008;29:2705e9.

Hirst S., Karakoti A., Tyler R., Sriranganathan N., Seal S., Reilly C. Anti-inflammatory properties of cerium oxide nanoparticles. Small 2009;5:2848e56.

Kong L., Cai X., Zhou X., Wong L., Karakoti A., Seal S. et al. Nanoceria extend photoreceptor cell lifespan in tubby rat by modulation of apoptosis / survival signaling pathways. Neurobiol Dis 2011:514-23.

***

Received: 12.03.2018

Revised: 17.04.2018

Signed for publication: 18.04.2018




DOI: http://dx.doi.org/10.17721/2616_6410.2018.24.6-12

Refbacks

  • There are currently no refbacks.


Лицензия Creative Commons
This journal is available according to the Creative Commons License «Attribution» («Атрибуція») 4.0 Global (CC-BY).