Embryonic cardiospecific knockout of α-E-catenin gene leads to alteration of energy metabolism in adult heart

V. Balatskyy, L. Macewicz, O. Piven
Institute of Molecular Biology and Genetics of Natl. Acad. Sci. of Ukraine, Kyiv; Institute of Molecular Biology and Genetics of Natl. Acad. Sci. of Ukraine, Kyiv; Institute of Molecular Biology and Genetics of Natl. Acad. Sci. of Ukraine, Kyiv

Abstract


Previously we have shown that the α-E-catenin knockout in the embryonic heart leads to hypertrophy in adult and activation of canonical Wntsignaling. Heart hypertrophy is also accompanied by metabolic disorders, but role of the α-E-catenin in these processes is not known. Aim of our work is to study the effect of α-E-catenin deletion on the lipid metabolism in the heart. Methods. In our experiment we have used α-Е-catenin conditional knockout and αMHC-Cre transgenic mice. We have utilized histological (Oil Red O staining) and molecular biological (Western blot) methods. Results. α-Е-catenin deletion leads to accumulation of lipid droplets in myocardium, and to violation of expression and phosphorylation of key regulators of lipid metabolism (Ampk, Pparα, Acc, Hsl). Conclusions. Ous results suggest that α-Е-catenin deletion leads to inhibition of lipid metabolism
in the heart.


Keywords


α-E-catenin, myocardium, metabolism, Ampk, Pparα, Acc, Hsl

Full Text:

PDF>PDF

References


Bernardo B., Weeks K., Pretorius L., McMullen J. Molecular distinction between physiological and pathological cardiac hypertrophy: Experimental findings and therapeutic strategies. Pharmacol Ther. 2010;128(1):191–227.

Kontaridis M., Geladari E., Geladari C. Pathways to myocardial hypertrophy. In: Introduction to Translational Cardiovascular Research. 2015. p. 167–86.

Grigoryan T., Wend P., Klaus A., Birchmeier W. Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev. 2008 ;22(17):2308–41.

Dyck J., Lopaschuk G. AMPK alterations in cardiac physiology and pathology: enemy or ally? J Physiol. 2006;574(1):95–112. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16690706

Chaanine A., Hajjar R. AKT signalling in the failing heart. Eur J Heart Fail [Internet]. 2011;13(8):825–9.

Balackiy V., Akimenko I., Macevich L., Piven O., Lukash L. -Ekatenin u gistologichnuh perebudovah miokarda pru starinni. Faktoru eksperumentalnoi eviluycii organizmav. 2016;18(0):219–22.

Balackiy V., Palchevska O., Macevich L., Piven O. Балацький ВВ, α-Е-кatenin potenciynuy regulator kanonichnogo Wnt ta HIPPO- sugnaliv u miokardi. Visnuk Ukrainskogo tovarustva genetukiv i selekcioneriv. 2016;14(2):168–73.

Agah R., Frenkel P., French B., Michael L., Overbeek P., Schneider M. Gene Recombination in Postmitotic Cells Targeted Expression of Cre Recombinase Provokes Cardiac-restricted, Site-specific Rearrangement in Adult Ventricular Muscle In Vivo. J Chem Phys. 1997;100(1):169–79. Available from:

Fischer A., Jacobson K., Rose J., Zeller R. Cryosectioning tissues. CSH Protoc. 2008;2008(8):pdb.prot4991.

Ljungberg O, Tibblin S. Peroperative fat staining of frozen sections in primary hyperparathyroidism. Am J Pathol. 1979;95(3):633–41.

Ahuja P., Zhao P., Angelis E., Ruan H., Korge P., Olson A. et al. Myc controls transcriptional regulation of cardiac metabolism and mitochondrial biogenesis in response to pathological stress in mice. J Clin Invest. 2010 May;120(5):1494–505.

Qi D., Young L. AMPK: energy sensor and survival mechanism in the ischemic heart. Trends Endocrinol Metab. 2015;26(8):422–9.




DOI: http://dx.doi.org/10.17721/2616_6410.2017.23.65-69

Refbacks

  • There are currently no refbacks.


Лицензия Creative Commons
This journal is available according to the Creative Commons License «Attribution» («Атрибуція») 4.0 Global (CC-BY).