Bacterial expression of the recombinant functionally active N-terminal module of the B. taurus tyrosyl-tRNA synthetase

V. Zayets, O. Tsuvariev, A. Kornelyuk, L. Kolomiyets
Taras Shevchenko National University of Kyiv, Kyiv; Taras Shevchenko National University of Kyiv, Kyiv; Taras Shevchenko National University of Kyiv, Kyiv; Institute of Molecular Biology and Genetics of Natl. Acad. Sci. of Ukraine, Kyiv

Abstract


The nucleotide sequence coding N-terminal module of Bos taurus tyrosyl-tRNA synthetase (mini TyrRS) was cloned into the bacterial expression vector pET23d(+). Bacterial expression of the recombinant protein mini TyrRS was performed in E. coli BL21 (DE3)pLysE cells with the use of the constructed vector pET-23d(+)39YRS for subsequent physical and chemical protein studies. The catalytic activity of the recombinant mini TyrRS has been studied in the aminoacylation reaction of homologous tRNATyr.


Keywords


tyrosyl-tRNA synthetase, mini TyrRS, cloning, bacterial expression

Full Text:

PDF>PDF

References


GliK B., Pasternak J. [Molecular Biotechnology. Principles and application]. M.: World; 2002. 589 p. In Russian.

Demain A., Vaishnav P. Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv. 2009; 27(3): 297-306.

Adrio J., Demain A. Recombinant organisms for production of industrial products. Bioeng Bugs. 2010;1(2):116-31.

Sahdev S., Khattar S., Saini K. Production of active eucariotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem. 2008;307(2):249-64.

Rosano G., Cessarelli E. Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers Microbiology. 2014;5:1-17.

Schimmel P. Aminoacyl-tRNA synthetase: general features and recognition of transfer RNAs. Ann Rev Biochem. 1987;56:125-158.

Kornelyuk A., Kurochkin I., Matsuka G. [Tyrosyl-tRNA synthetase from bovine liver. [Purification and physico-chemical properties]. Mol Biol. 1988;22(1):176-86. In Russian.

Kornelyuk A., Tas M., Dubrovsky A., Murray C. Cytokine activity of the non-catalytic EMAP-2-like domain of mammalian tyrosyl-tRNA synthetase. Biopolymers and Cell. 1999;15(2):168-72.

Wakasugi K., Schimmel P. Two distinct cytokines released from a human aminoacyl-tRNA synthetase. Science.1999;284(5411):147-51.

Wakasugi K., Slike B., Hood J., Ewalt K., Cheresh D., Schimmel P. Induction of angiogenesis by the fragment of human tyrosyl-tRNA synthetase. J Biol Chem. 2002;277(23):20124-6.

Guo M., Schimmel P. Essential nontranslational function of tRNA synthetases. Nat Chem Biol. 2013;9(3):145-3.

Nishsmura A., Morita M., Nishsmura Y., Sugino Y. Rapid and highly efficient method for preparation of competent Escherichia coli cells. Nucl Acids Res. 1990;18(20):6169.

Sambrook J., Fritsch T., Manniatis T. Molecular Cloning: A Laboratory Manual. 2th ed. N.York: Cold Spring Yarbor; 1989.

Laemmli U. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680-5.

Naidenov V., Vudmaska M., Kornelyuk A. [Site-directed mutagenesis of lysine residues located in the connection peptide of the nucleotidebinding domain (Rossman fold) of tyrosyl-tRNA synthetase from bovine liver]. Biopolymers and Cell. 2000;16(4):275-80. In Russian.

Levanets O., Naidenov V., Vudmaska M., Matsuka G., Kornelyuk

A. [PCR amplification, cloning and sequencing of cDNA fragment encoding a nucleonsde binding domain of mammalian tyrosyl-tRNA synthetase]. Biopolymers and Cell. 1996;12(5): 66- 70. In Russian.

Studier F., Moffatt B. Use of bacteriophage T7 RNA polymerase to direct selective high level expression of cloned genes. J Mol Biol. 1986; 189(1):113-30.




DOI: http://dx.doi.org/10.17721/2616_6410.2017.23.33-37

Refbacks

  • There are currently no refbacks.


Лицензия Creative Commons
This journal is available according to the Creative Commons License «Attribution» («Атрибуція») 4.0 Global (CC-BY).