Effect of melatonin different time administration on the development of diet-induced obesity in rats

O. Kalmykova, A. Pustovalov, I. Vareniuk, M. Dzerzhynsky
ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv; ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv; ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv; ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv

Abstract


In recent years much attention has been paid for study of the melatonin use possibilities for improving obesity comorbidities. The aim of our study was to determine the influence of melatonin different time treatment on body weight changes of dietinduced obesity in rats. The administration by gavage of melatonin in dose 30 mg/kg for 7 weeks had the potential to decrease visceral fat weight, Lee index (both after morning and evening treatment) and body weight gain rate (only after evening dose).


Keywords


melatonin, obesity, high-fat diet, chronobiology

Full Text:

PDF>PDF

References


Fleming T., Robinson M., Thomson B., Graetz N., Margono C., et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. The lancet. 2014; 384(9945): 766-781.

The official data of the WHO Bulletin published in May 2017. Available from: http://www.who.int

Lumeng C., Saltiel A. Inflammatory links between obesity and metabolic disease. J Clin Invest. 2011; 121: 2111–2118.

Mathieu P., Poirier P., Pibarot P., Lemieux I., Després JP. Visceral obesity the link among inflammation, hypertension, and cardiovascular disease. Hypertension. 2009; 53(4): 577–584.

McTiernan A. Obesity and cancer: the risks, science, and potential management strategies. Oncology 2005; 19(7): 871–881.

James W. The fundamental drivers of the obesity epidemic. Obes Rev. 2008 Mar;9(s1) Suppl 1:6–13.

Swinburn Bю, Sacks G., Hall K., McPherson K., Finegood D., Moodie M, et al. The global obesity pandemic: shaped by global drivers and local environments. Lancet. 2011 Aug 27;378(9793):804–14.

Reiter R. Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev. 1991; 12(2):151–180.

Wang D. Seasonal adjustments in body mass and thermogenesis in Mongolian gerbils (Meriones unguiculatus): the roles of short photoperiod and cold. Journal of Comparative Physiology B. 2005; 175(8): 593-600.

Bartness T., Demas G., Song C. Seasonal changes in adiposity: the roles of the photoperiod, melatonin and other hormones, and sympathetic nervous system. Experimental Biology and Medicine. 2002; 227(6): 363-376.

Cano Barquilla P., Pagano E., Jiménez‐Ortega V., Fernández‐Mateos P., Esquifino A., Cardinali D. Melatonin normalizes clinical and biochemical parameters of mild inflammation in diet‐induced metabolic

syndrome in rats. Journal of pineal research. 2014; 57(3): 280-290.

Cipolla‐Neto J., Amaral F., Afeche S., Tan D., Reiter R. Melatonin, energy metabolism, and obesity: a review. Journal of pineal research. 2014; 56(4): 371-381.

Szewczyk‐Golec K., Woźniak A., Reiter R. Inter‐relationships of the chronobiotic, melatonin, with leptin and adiponectin: implications for obesity. Journal of pineal research. 2015; 59(3): 277-291.

Baraldo M. The influence of circadian rhythms on the kinetics of drugs in humans. Expert opinion on drug metabolism & toxicology. 2008; 4(2): 175-192.

Thurley K., Herbst C., Wesener F., Koller B., Wallach T., Maier B., et al. Principles for circadian orchestration of metabolic pathways. Proceedings of the National Academy of Sciences. 2017; 114(7): 1572-1577.

Harpsoe N., Andersen L., Gögenur I., Rosenberg J. Clinical pharmacokinetics of melatonin: a systematic review. European journal of clinical pharmacology. 2015; 71(8): 901-909.

Gooneratne N., Edwards A., Zhou C., Cuellar N., Grandner M., Barrett J. Melatonin pharmacokinetics following two different oral surge-sustained release doses in older adults. J. Pineal Res. 2012; 52(4): 437–445.

Rubio-Sastre P., Scheer F., Gómez-Abellán P., Madrid J., Garaulet M. Acute melatonin administration in humans impairs glucose tolerance in both the morning and evening. Sleep. 2014; 37(10): 1715-1719.

Schuster C., Gauer F., Malan A. Recio J., Pevet P., Masson-Pevet M. The circadian clock, light/dark cycle and melatonin are differentially involved in the expression of daily and photoperiodic variations in mt(1) melatonin receptors in the Siberian and Syrian hamsters. Neuroendocrinology. 2001; 74(1): 55–68.

Masana M., Dubocovich M. Melatonin receptor signaling: finding the path through the dark. Sci. STKE 2001; 2001 (107):39.

Von Gall C., Stehle J., Weaver D. Mammalian melatonin receptors: molecular biology and signal transduction. Cell and Tissue Research. 2002; 309(1): 151–62.

Rosenstein R., Golombek D., Kanterewicz B., Cardinali D. Timedependency for the in vitro effect of melatonin on calcium uptake in rat hypothalamus. J. Neural Transm., Gen. Sect. 1991; 85(3): 243–247.

Witt-Enderby P., Bennett J., Jarzynka M., Firestine S., Melan M. Melatonin receptors and their regulation: biochemical and structural mechanisms. Life sciences. 2003; 72(20): 2183-2198.

Jarzynka M., Passey D., Johnson D., Konduru N., Fitz N., Radio N., et al. Microtubules modulate melatonin receptors involved in phase-shifting circadian activity rhythms: in vitro and in vivo evidence. Journal of pineal research. 2009; 46(2): 161-171.

Shen X., Tang Q., Huang J., Cai W. Vitamin E regulates adipocytokine expression in a rat model of dietary-induced obesity. Experimental biology and medicine. 2010; 235(1): 47-51.

Bernardis L., Patterson B. Correlation between 'Lee index' and carcass fat content in weanling and adult female rats with hypothalamic lesions. Journal of Endocrinology. 1968;40(4): 527-528.

Wolden-Hanson T., Mitton D., McCants R., Yellon S., Wilkinson C., Matsumoto A., et al. Daily melatonin administration to middle-aged male rats suppresses body weight, intraabdominal adiposity, and plasma leptin and insulin independent of food intake and total body fat. Endocrinology. 2000; 141(2): 487-497.

Ríos-Lugo M., Cano P., Jiménez-Ortega V., Fernández-Mateos M., Scacchi P., Cardinali D., et al. Melatonin effect on plasma adiponectin, leptin, insulin, glucose, triglycerides and cholesterol in normal and high fat–

fed rats. Journal of pineal research. 2010; 49(4): 342-348.

Nduhirabandi F., Huisamen B., Strijdom H., Blackhurst D., Lochner A. Short-term melatonin consumption protects the heart of obese rats independent of body weight change and visceral adiposity. Journal of pineal

research. 2014; 57(3): 317-332.

Baltaci A., Mogulkoc R. Pinealectomy and melatonin administration in rats: their effects on plasma leptin levels and relationship with zinc. Acta Biologica Hungarica. 2007; 58(4): 335-343.

Kitagawa A., Ohta Y., Ohashi K. Melatonin improves metabolic syndrome induced by high fructose intake in rats. Journal of pineal research. 2012; 52(4): 403-413.

Huang L., Zhang C., Hou Y., Laudon M., She M., Yang S. et al. Blood pressure reducing effects of piromelatine and melatonin in spontaneously hypertensive rats. Eur Rev Med Pharmacol Sci. 2013; 17(18): 2449-56.

Ríos-Lugo M., Jiménez-Ortega V., Cano-Barquilla P., Mateos P., Spinedi E., Cardinali D. et al. Melatonin counteracts changes in hypothalamic gene expression of signals regulating feeding behavior in high-fat fed rats. Hormone molecular biology and clinical investigation. 2015; 21(3): 175-183.

Agabiti-Rosei C., De Ciuceis C., Rossini C., Porteri E., Rodella L. F., Withers S. B. et al. Anticontractile activity of perivascular fat in obese mice and the effect of long-term treatment with melatonin. Journal of hypertension. 2014; 32(6): 1264-1274.

Bartness T., Demas G., Song C. Seasonal changes in adiposity: the roles of the photoperiod, melatonin and other hormones, and sympathetic nervous system. Experimental Biology and Medicine. 2002; 227(6): 363-376.

Favero G., Stacchiotti A., Castrezzati S., Bonomini F., Albanese M., Rezzani R. et al. Melatonin reduces obesity and restores adipokine patterns and metabolism in obese (ob/ob) mice. Nutrition Research. 2015; 35(10): 891-900.

Puchalski S., Green J., & Rasmussen D. Melatonin effect on rat body weight regulation in response to high-fat diet at middle age. Endocrine. 2003; 21(2): 163-167.

Jiménez-Aranda A., Fernández-Vázquez G., Campos D., Tassi M., VelascoPerez L., Tan D. et al. Melatonin induces browning of inguinal white adipose tissue in Zucker diabetic fatty rats. Journal of pineal research. 2013; 55(4): 416-423.

Song Y., Chen M. Effects of melatonin administration on plasma leptin concentration and adipose tissue leptin secretion in mice. Acta Biologica Hungarica. 2009; 60(4): 399-407.

Mauriz J., Collado P., Veneroso C., Reiter R., González-Gallego J. A review of the molecular aspects of melatonin's anti-inflammatory actions: recent insights and new perspectives. Journal of pineal research. 2013; 54(1): 1-14.

Tahan G., Gramignoli R., Marongiu F., Aktolga S., Cetinkaya A., Tahan V., et al. Melatonin expresses powerful anti-inflammatory and antioxidant activities resulting in complete improvement of acetic-acid-induced colitis in rats. Digestive diseases and sciences. 2011; 56(3): 715-720.

Piccinetti C., Migliarini B., Olivotto I., Coletti G., Amici A., Carnevali O. Appetite regulation: the central role of melatonin in Danio rerio. Hormones and behavior. 2010; 58(5): 780-785.

Zaitone S., Hassan N., El-Orabi N., El-Awady E. Pentoxifylline and melatonin in combination with pioglitazone ameliorate experimental nonalcoholic fatty liver disease. European journal of pharmacology. 2011; 662(1): 70-77.

Şener G., Balkan J., Çevikbaş U., Keyer-Uysal, M., Uysal M. Melatonin reduces cholesterol accumulation and prooxidant state induced by high cholesterol diet in the plasma, the liver and probably in the aorta of

C57BL/6J mice. Journal of pineal research. 2004; 36(3): 212-216.

Kalmukova O., Savchuk O., Dzerzhinsky M. Melatonin improves skeletal muscles morphology and metabolism in high-calorie diet-induced obesity rat model / Third Kyiv International Symposium "Smooth Muscles Physiology, Biophysics and Pharmacology", Kyiv – Lutsk, Ukraine, 18-22 September 2017. – p. 70.

Prunet-Marcassus B., Desbazeille M., Bros A., Louche K.,

Delagrange P., Renard P. et al. Melatonin reduces body weight gain in Sprague Dawley rats with diet-induced obesity. Endocrinology. 2003; 144(12): 5347-5352.

Hussein M., Ahmed O., Hassan A., Ahmed M. Intake of melatonin is associated with amelioration of physiological changes, both metabolic and morphological pathologies associated with obesity: an animal model. International journal of experimental pathology. 2007; 88(1): 19-29.

She M., Deng X., Guo Z., Laudon M., Hu., Liao D. et al. NEU-P11, a novel melatonin agonist, inhibits weight gain and improves insulin sensitivity in high-fat/high-sucrose-fed rats. Pharmacological research. 2009; 59(4): 248-253.




DOI: http://dx.doi.org/10.17721/2616_6410.2017.23.20-27

Refbacks

  • There are currently no refbacks.


Лицензия Creative Commons
This journal is available according to the Creative Commons License «Attribution» («Атрибуція») 4.0 Global (CC-BY).