The influence of iron oxide nanoparticles on the viability of the generated human dendritic cells

O. Skachkova, S. Antonuk, V. Orel, N. Khranovska, M. Inomistova
Ukrainian National Cancer Center, Kyiv; Ukrainian National Cancer Center, Kyiv; Ukrainian National Cancer Center, Kyiv; Ukrainian National Cancer Center, Kyiv; ESC "Institute of Biology and medicine", Taras Shevchenko National University of Kyiv, Kyiv


The aim of the study was to investigate the properties of generated dendritic cells (DC) from monocytes of peripheral blood loaded with nanoparticles
(NP) of iron oxide. The results of cytological studies showed that the ability to absorb Fe3O4 iron NP in generated DCs of healthy donors
and cancer patients did not differ. It was established that the most optimal concentration of Fe3O4 iron oxide NPs for loading of DCs was
8*10-12 mg/ml. It was shown that Fe3O4 iron oxide NPs practically does not affect viability, apoptosis and distribution of generated DCs along the
phases of the cell cycle on the 8th day of cultivation (exposure time with the NP – 24 hours). Increase of the DC cultivation period with the NPs to 9-
10 days (exposure time from the NP – 48-72 hours) leads to the increase in the number of cells in the G2/M phase of the cell cycle.


immunotherapy, dendritic cells, iron oxide nanoparticles, phagocytic activity and viability of dendritic cells.

Full Text:



Nie S., Xing Y., Kim G. J., Simons J. Nanotechnology Applications in Cancer. Annu. Rev. Biomed.Eng. 2007; 9: 257–

Uthaman S., Maya S., Jayakumar R., Cho C., Park I. Carbohydratebased nanogels as drug and gene delivery systems.Journal of Nanoscience and Nanotechnology.2014;14(1):694–704. doi: 10.1166/jnn.2014.8904.

Estelrich J.,Sánchez-Martín M., Busquets M. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int J Nanomedicine. 2015;10: P.1727–1741.doi: 10.2147/IJN.S76501.

Orel V., Bezdеnеzhnih N., Lihova O., Nikolov N., Orel I., Romanov A., Kudryavets Y., Shchepotin I. Doslіdzhennja mehanіzmіv protipuhlinnogo efektu tehnologіy magnіtnoy nanoterapіy na modelі kul'tur klіtun zlojakіsnih puhlun ljudunu rіznogo tkanunnogo genezu. Klinicheskaja onkologija. 2014;2 (14): 58-61.[In Ukraine].

Jin H., Qian Y., Dai Y., Qiao S., Huang C., Lu L., Luo Q., Chen J., Zhang Z. Magnetic Enrichment of Dendritic Cell Vaccine in Lymph Node with Fluorescent-Magnetic Nanoparticles Enhanced Cancer Immunotherapy. Theranostics. 2016; 2;6(11):2000-2014. eCollection 2016.

Fan Y., Moon. J. Nanoparticle drug delivery systems designed to improve cancer vaccines and immunotherapy. Vaccines. 2015; 3.:662-685. doi:10.3390/vaccines3030662.

Lewinski N.,Colvin V., Drezek R. Cytotoxicity of nanoparticles. Small. 2008; 4(1): 26-49. doi: 10.1002/smll.200700595.

Chaoliang T., Xiao H., Hua Z. Synthesis and applications of grapheme based noble metal nanostructures. MaterialsToday. 2013; 16(1-2): 29-36. DOI: 10.1016/j.mattod.2013.01.021.

Lilli R. Patogistologicheskaja tehnika i prakticheskaja gistohimija. M.; Mir, 1969:377–378.

Mühlfeld C., Rothen-Rutishauser B., Blank F., Vanhecke D., Ochs M., Gehr P. Interactions of nanoparticles with pulmonary structures and cellular responses. Am J. Physiol. Lung. Cell Mol. Physiol. 2008.; 294(5): 817-829.doi:10.1152/ajplung.00442.2007.

Khranovska N., Skachkova O., Sovenko V., Sydor P., Inomistova M., Melnyk V. Phenotypic and functionalproperties of generated dendriticcells in lung cancer patients. Cell and Organ Transplantology. 2016; 4(2):С. 156-161. doi:10.22494/cot.v4i2.63.

Sohaebuddin S., Thevenot P., Baker D., Eaton J., Tang L. Nanomaterial cytotoxicity is composition, size, and cell type dependent . Part. FibreToxicol. 2010; 7(22): 1



  • There are currently no refbacks.

Лицензия Creative Commons
This journal is available according to the Creative Commons License «Attribution» («Атрибуція») 4.0 Global (CC-BY).