Oxidation-antioxidant balance in the colon mucosa of rats at different times points after ceftriaxone administration

Y. Holota, A. Bazan, G. Tolstanova
; Taras Shevchenko National University of Kyiv, Kyiv, Ukraine; Taras Shevchenko National University of Kyiv, Kyiv, Ukraine


Сeftriaxone administration for 14 days (300 mg/kg, i.m.) increased level of thiobarbituric acid reactive substances and decreased the activity of superoxide dismutase and catalase antioxidant enzymes in the colon mucosa of rats immediately after antibiotics injection. On the 29th day of the experiment (in 14 days after ceftriaxone withdrawal) the level of TBA-active substances still 2.5-fold (P <0.05) exceeded the control value and SOD activity remained below control values to the 72nd day of the experiment. These were accompanied by decreased level of protein thiol groups in 15 and 29 days 1.9-fold (P <0.05) and 1.4-fold (P = 0.08), respectively. Thus antibiotics can lead to long-term oxidative disturbance in the colon mucosa of rats.


ceftriaxone; colon; oxidative stress


Sommer F, Backhed F. The gut microbiota – masters of host development and physiology. Nat Rev Microbiol. 2013;11(4):227–238.

Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol. 2016;14(1):20-32.

Nagpal R, Kumar M, Yadav AK, Hemalatha R, Yadav H, Marotta F, Yamashiro Y. Gut microbiota in health and disease: an overview focused on metabolic inflammation. Benef Microbes. 2016;7(2):181-94.

Kronman MP, Zaoutis TE, Haynes K, et al. Antibiotic exposure and IBD development among children: a population-based cohort study. Pediatrics. 2012;130:794–803.

Scott FI, Horton DB, Mamtani R, Haynes K, Goldberg DS, Lee DY, Lewis JD. Administration of antibiotics to children before age 2 years increases risk for childhood obesity. Gastroenterology. 2016;151(1):120– 129.

Holota Y, Dzyubenko N, Ostapchuk A, Dovbynchuk T, Serhiychuk T, et al. Long-term effect of antibiotic therapy on colonic levels of short-chain fatty acids (SCFA), FFA2 and FFA3 receptors. The 15th Int. Conf. of Ulcer Research. Ottawa, Canada. 2015:48.

Antonopoulos DA, Huse SM, Morrison HG, Schmidt TM, Sogin ML, Young VB. Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect Immun. 2009;77(6):23672375.

Holota Y, Holubenko O, Ostapchuk A, Serhiychuk T, Zakordonets L, Tolstanova G. Fecal short-chain fatty acids at different time points after ceftriaxone administration in rats. Ukr Biochem J. 2017;89(1):51-58.

Holota Y, Olefir Y, Dovbynchuk T, Tolstanova G. Carbohydrate composition of rat intestine surface mucus layer after ceftriaxone treatment. Ukr Biochem J. 2016;88(6): 35-44.

Donohoe DR, Garge N, Zhang X, Sun W, O'Connell TM, et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011;13(5):517-526.

Moura FA, de Andrade KQ2, Santos JC et al. Antioxidant therapy for treatment of inflammatory bowel disease: Does it work? Redox Biol. 2015;6:617-639.

Kruidenier L, Kuiper I, Lamers CB, Verspaget HW. Intestinal oxidative damage in inflammatory bowel disease: semi-quantification, localization, and association with mucosal antioxidants. J Pathol. 2003;201(1):28-36.

Korolyuk MA, Ivanov LI, Mayorov IG, Tokarev VE. A method of determining the catalase activity. Lab Delo. 1988;(1):16-18.

Bertrand RL, Okechukwu EM Modifying polyacrylamide background color for the nitroblue tetrazolium-based superoxide dismutase staining assay. Adv in Enz Res. 2014;2(2):77-81.

Stalnaia ID, Haryshvyly TG. Method for determination of malondialdehyde via thiobarbituric acid. In: Orekhovich VN, editor. Modern methods in biochemistry. Moscow: Meditsina; 1977. P. 66–68. Russian.

Ellman G.L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70-77.

Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev. 2014;94(2):329-54.

Cagin YF, Parlakpinar H, Vardi N, Polat A, Atayan Y, et al. Effects of dexpanthenol on acetic acid-induced colitis in rats. Exp Ther Med. 2016;12(5):2958–2964.

Yoshikawa T, Ueda S, Naito Y, Takahashi S, Oyamada H, Morita Y, Yoneta T, Kondo M. Role of oxygen-derived free radicals in gastric mucosal injury induced by ischemia or ischemia-reperfusion in rats. Free Radic Res Commun. 1989;7(3-6):285-91.

Achitei D, Ciobica A, Balan G, Gologan E, Stanciu C, Stefanescu G. Different profile of peripheral antioxidant enzymes and lipid peroxidation in active and non-active inflammatory bowel disease patients. Dig Dis Sci. 2013;58(5):1244-1249.

Marinho HS, Real C, Cyrne L, Soares H, Antunes F. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol. 2014;2:535-562.

Holota Y, Tjapko O, Dovbynchuk T, Tolstanova G. The disturbance of oxidant-antioxidant balance in rat colonic mucosa after antibiotic therapy. Stud Biol. 2015;9(3–4):49-56.

Fomenko I. The role of lipid peroxidation processes in the formation of ulcerogenic lesions of colonic mucosa under conditions of different stress models. Visnyk Probl Biol and Med. 2015;1(122):223-226.

Harty R.F. Energy, oxidative stress, and inflammation in the colon. Dig Dis Sci. 2013;58:3386–3388.

Khan R, Sultana S. Farnesol attenuates 1,2-dimethylhydrazine induced oxidative stress, inflammation and apoptotic responses in the colon of Wistar rats. Chem Biol Interact. 2011;192(3):193-200.

DOI: http://dx.doi.org/10.17721/2616_6410.2017.22.11-15


  • There are currently no refbacks.

Лицензия Creative Commons
This journal is available according to the Creative Commons License «Attribution» («Атрибуція») 4.0 Global (CC-BY).