The effect of neostigmine, hexamethonium and methyllycaconitine on large-conductance cation channels in the nuclear membrane of cerebellar purkinje neurons of rats

B.-M. Briantseva, O. Tarnopolska, O. Kotyk, A. Kotliarova
Bogomolets Institute of Physiology NASU, Kyiv, Ukraine; Taras Shevchenko National University of Kyiv, Kyiv; Bogomolets Institute of Physiology NASU, Kyiv, Ukraine; Taras Shevchenko National University of Kyiv, Kyiv; Bogomolets Institute of Physiology NASU, Kyiv; Bogomolets Institute of Physiology NASU, Kyiv

Abstract


Large-conductance cation channels (LCC-channels) were found in both (inner and outer) nuclear membranes of cerebellar Purkinje neurons. They are the most common type of intracellular spontaneously active ion channels among other identified. Their structure and physiological functions are still unknown, but the previous findings confirmed their sensitivity to a number of agonists/antagonists of nicotinic acetylcholine receptors. The purpose of the investigation was to estimate the effect of other regulators of the N-cholinoreceptors functioning – neostigmine, hexamethonium, and methyllycaconitine (MLA) on the LCC-channels in the nuclear membrane of cerebellar Purkinje neurons of rats. The effect of the agents was estimated based on changes in the following biophysical parameters: current amplitude, Po, channel flickering effect. Ion currents through single channels were registered using the patch-clamp technique in a nucleus-attached mode in voltage-clamp configuration. Among the studied substances, only MLA and hexamethonium influenced the LCC-channels functioning. Hexamethonium at a concentration of 2 mM reduced the Po of the LCC-channels by 46%. Under the influence of MLA, a slight effect of channel flickering was observed ("Poisson surprise" was 2.14 in the control and 3.81 under the influence of 200 μM of the substance respectively). No significant change of the biophysical characteristics of the LCC-channels under the influence of neostigmine was detected. Despite the low efficiency as LCC-channels blockers, the lack or only slight effect is a strong argument in favor of the substance usage in medicine due to their wide therapeutic potential. The severity of their effects is necessary for a comprehensive analysis of the effect patterns of the abovementioned substances on the molecular dynamics of the studied channels. The results will also be important for the identification or synthesis of new and more effective inhibitors of the LCC-channels.

Keywords


LCC-channels; neostigmine; hexamethonium; methyllycaconitine; nuclear membrane

Full Text:

PDF>PDF

References


O. Kotyk, A. Kotlyarova, O. Isaieva et al Vplyv deiakykh anestetykiv ta pryrodnykh otrut na funktsionuvannia LCC-kanaliv yadernoi membrany kardiomiotsytiv ta neironiv Purkinie mozochka//Visnyk Kyivskoho natsionalnoho universytetu imeni Tarasa Shevchenka: Biolohiia. – 2019. – Т. 3, № 79. Ukrainian.

A. Kotlyarova, O. Kotyk, I. Yuryshynets et al. Funktsionuvannia kationnykh kanaliv velykoi providnosti yadernoi membrany pid vplyvom moduliatoriv nikotynovykh kholinoretseptoriv // Fiziol. zhurn. – 2019. – Т. 65, № 6. Ukrainian.

Adams D.J., Bevan S., Terrar D.A. Modes of hexamethonium action on acetylcholine receptor channels in frog skeletal muscle // Br J Pharmacol. 1991; 102(1):135-145. Available from: doi:10.1111/j.1476-5381.1991.tb12144.x.

Aiyar V. N., Benn M. H., Hanna T., Jacyno J., Roth S. H., Wilkens J. L. The principal toxin of Delphinium brownii Rydb., and its mode of action // Experientia, 1979; 35(10): 1367-1368. Available from: https://doi.org/ 10.1007/BF01964013.

Briggs C. A., McKenna D. G., Piattoni-Kaplan M. Human alpha 7 nicotinic acetylcholine receptor responses to novel ligands // Neuropharmacology. 1995; 34(6): 583–590. Available from: https://doi.org/ 10.1016/0028-3908(95)00028-5.

Carlson A. and Kraus G. Physiology, Cholinergic Receptors // In: StatPearls [Internet]. Available from: https://pubmed.ncbi.nlm.nih.gov/ 30252390/.

Colovic M., Krstic D., Lazarevic-Pasti T., Bondzic A. and Vasic V. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology // Current Neuropharmacology. 2013; 11(3): 315-335.

Coronado R., Miller C. Decamethonium and hexamethonium block K+ channels of sarcoplasmic reticulum // Nature. 1980; 288(5790):495-497. Available from: doi:10.1038/288495a0.

Kleinz M. The pharmacology of the autonomic nervous system // Small Animal Clinical Pharmacology. 2008; 59-82.

Kotyk O., Kotlyarova A., Pavlova N. and Marchenko S. Effects of Blockers of Large-Conductance Cation Channels of the Nuclear Membrane // Neurophysiology. 2017; 49(2):151-153.

Lalo U., Pankratov Y., Krishtal O., Alan North R. Methyllycaconitine,α-bungarotoxin and (+)-tubocurarine block fast ATP-gated currents in rat dorsal root ganglion cells // British Journal of Pharmacology. 2004; 142(8): 1227-1232. Available from: doi:10.1038/ sj.bjp.0705878.

Lange A. and Corbett A. H. Nuclear Pores and Nuclear Import/Export // Encyclopedia of Biological Chemistry. 2013; 318–323. Available from: doi:10.1016/b978-0-12-378630-2.00437-0.

Liu J. Neostigmine // Reference Module in Biomedical Sciences. 2017.

Luo J., Chen S., Min S. and Peng L. Reevaluation and update on efficacy and safety of neostigmine for reversal of neuromuscular blockade // Therapeutics and Clinical Risk Management. 2018; (14): 2397-2406.

Marchenko S., Yarotskyy V., Kovalenko T., Kostyuk P., Thomas R. Spontaneously active and InsP3- activated ion channels in cell nuclei from rat cerebellar Purkinje and granule neurons // J Physiol. 2005; Jun;565(3):897-910.

Taglialatela M. and Panza E. Hexamethonium // Reference Module in Biomedical Sciences. 2018. Available from: https://www.sciencedirect.com/ science/article/pii/B9780128012383973124.

Panter K. E., Manners G. D., Stegelmeier B. L., Lee S., Gardner D. R., Ralphs M. H., Pfister J. A. and James L. F. Larkspur poisoning: toxicology and alkaloid structure–activity relationships // Biochemical Systematics and Ecology. 2002; 30(2): 113–128. Available from: https://doi.org/10.1016/ S0305-1978(01)00123-5.

Hexamethonium // PubChem Substance and Compound databases. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/3604.

Methyllycaconitine Perchlorate, Delphinium sp. // PubChem Substance and Compound databases. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/494471.

Neostigmine. // PubChem Substance and Compound databases. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Neostigmine# section=Computed-Descriptors.

Smith K., Fowler P. and Edmunds V. Hypertension and its Control by Hexamethonium // BMJ. 1954; 2(4899): 243-1250.

Solinas M., Scherma M., Fattore L., Stroik J., Wertheim C., Tanda G. et al. Nicotinic α 7 Receptors as a New Target for Treatment of Cannabis Abuse // Journal of Neuroscience. 2007; 27(21): 5615-5620.

Stuppy L. Hexamethonium and hydralazine hydrochloride for treatment of hypertension // Calif Med. 1954; 80(3):189-91.

Tucci S., Genn R. and File S. Methyllycaconitine (MLA) blocks the nicotine evoked anxiogenic effect and 5-HT release in the dorsal hippocampus: possible role of α7 receptors // Neuropharmacology. 2003; 44(3): 367-373.

Van Goethem N., Paes D., Puzzo D., Fedele E., Rebosio C., Gulisano W. et al. Antagonizing α7 nicotinic receptors with methyllycaconitine (MLA) potentiates receptor activity and memory acquisition // Cellular Signalling. 2019; 62:109338.

Wishart D.S., Feunang Y.D., Guo A.C., et al. DrugBank 5.0: a major update to the DrugBank database for 2018 // Nucleic Acids Res. 2018;46(D1):D1074-D1082. Available from: doi:10.1093/nar/gkx1037.

Received in the editorial 14.09.2021

Received version on 14.10.2021

Signed in the press on 14.10.2021




DOI: http://dx.doi.org/10.17721/1728.2748.2021.87.6-11

Refbacks

  • There are currently no refbacks.


Лицензия Creative Commons
This journal is available according to the Creative Commons License «Attribution» («Атрибуція») 4.0 Global (CC-BY).