Betaine influence on the endothelial cells

K. Kalynovska, P. Fedyshyn, L. Kalachniuk, L. Garmacnhuk, O. Smirnov
National University of Life and Environmental Sciences of Ukraine, Kyiv; National University of Life and Environmental Sciences of Ukraine, Kyiv; National University of Life and Environmental Sciences of Ukraine, Kyiv; Taras Shevchenko National University of Kyiv, Kyiv; Institute of animal biology of NAAS, Lviv


The use of betaine as a bioactive substance remains relevant due to its role in methylation processes (including methionine), antioxidant protection of cells for lipid metabolism, participation in anti-inflammatory processes and stabilization of the endothelial-epithelial barrier as a powerful regulator of metabolic processes in cells and tissues. Therefore, the aim of this work was to study the direct effect of betaine on cultured endothelial cells. The objectives of the work were to analyze the literature on the use of betaine as a donor of methyl groups and osmoprotector (especially the use of its osmotolytic properties), and to conduct experimental studies of its effect on endothelial cells. The effect of betaine on endothelial cells (RAE lines) was studied using traditional methodological approaches: MTT test to determine the activity of mitochondrial enzymes and cell survival, assessment of glucose uptake and morphological properties of endothelial cells.
The results of the study of the effect of betaine on endothelial cells showed no toxic effects, increased concentration of endothelial cells compared with control of its level of 0,5 mg/ml and 1 mg/ml when stained with trypan blue, increased optical absorption due to reduction of formazan by mitochondrial enzymes in living cells within its concentrations of 1–4 mg/ml by MTT test, increasing the activity of mitochondrial oxidoreductases per unit of living cells at its concentrations of 1 and 4 mg/ml, the highest absorption of glucose by cells at 0,125 mg/ml and 1 mg/ml of the biological product, compared with the control there were morphological differences of cells, namely: elongation, greater number of processes and the formation of structures that had signs of procapillary. Therefore, betaine at a concentration of 1 mg/ml may serve as a kind of standard of positive effects on endothelial cells in subsequent studies of bioactive drugs.


betaine, glucose, endothelial cells, mitochondrial enzymes, osmolite

Full Text:



Zhao, G., He, F., Wu, C., Li, P., Li, N., Deng, J., Zhu, G., Ren, W., Peng, Y.(2018). Betaine in Inflammation: Mechanistic Aspects and Applications// Front. Immunol.

Yu, D., Xu, Z. (2004) Effects of betaine on growth performance and carcass characteristics in growing pigs. Asian-australas J Anim Sci. 17(12):490–3. doi:10.5713/ajas.2004.1700

Hoffmann, L., Brauers, G., Gehrmann, T., Haussinger, D., Mayatepek, E., Schliess, F., et al. (2013) Osmotic regulation of hepatic betaine metabolism. Am J PhysiolGastrointest Liver Physiol. 304(9):G835–46. doi:10.1152/ajpgi.00332.2012

Xia Y, Chen S, Zhu G, Huang R, Yin Y, Ren W. (2018) Betaine Inhibits Interleukin-1beta Production and Release: Potential Mechanisms. Front Immunol. 9:2670. doi: 10.3389/fimmu.2018.02670

Kempson, S. A., Vovor-Dassu, K., Day, C. (2013). Betaine Transport in Kidney and Liver: Use of Betaine in Liver Injury. Cell PhysiolBiochem, 32(suppl 1), 32-40. DOI: 10.1159/000356622

Willingham, B.D., Ragland, T.J., Ormsbee, M.J. (2020). Betaine Supplementation May Improve Heat Tolerance: Potential Mechanisms in Humans. Nutrients. 12 (10), 2939; doi:10.3390/nu12102939

Leopold, B., Strutz, J., Weiss, E., Gindlhuber, J., Birner‐Gruenberger, R., Hackl, H., M. Appel, H., Cvitic, S., Hidden, U. (2019) Outgrowth, proliferation, viability, angiogenesis and phenotype of primary human endothelial cells in different purchasable endothelial culture media: feed wisely. Histochemistry and Cell Biology. 152:377–390

Amraei, R., Rahimi, N. (2020) COVID-19, Renin-Angiotensin System and Endothelial Dysfunction. Cells. 9(7):1652. doi: 10.3390/cells9071652.

Varga, Z., Flammer, A. J., Steiger, P., Haberecker, M., Andermatt, R., Zinkernagel, A. S., Mehra, M. R., Schuepbach, R. A., Ruschitzka, F., Moch, H. (2020) Endothelial cell infection and endotheliitis in COVID-19. Lancet. 395(10234):1417-1418. doi: 10.1016/S0140-6736(20)30937-5

Garmanchouk, L. V., Pyaskovskaya, O. N., Solyanik, G. I. (2010) Influence of pro-angiogenic cytokines on proliferative activity and survival of endothelial cells. Biopolym Cell. 26(3): 187-193.

Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods.65(1-2): 55-63.

Nikolaienko,Т.V., Nikulina,V.V., Shelest, D. V., Garmanchuk, L. V. (2016) The mechanism of VEGF-mediated endothelial cells survival and proliferation in conditions of unfed-culture// Ukr. Biochem. J. 88, (4):12-19

Sarnatskaya, V., Shlapa, Y., Yushko, L., Shton, I., Solopan, S., Ostrovska, G., Kalachniuk, L., Negelia, A., Garmanchuk, L., Prokopenko, I., Khudenko, N., Maslenny, V., Bubnovskaya, L., Belous, A., Nikolaev, V. (2020) Biological Activity of Cerium Dioxide Nanoparticles. J Biomed Materials Res. Part A,,

D'Onofrio, N., Balestrieri, A., Neglia, G., Monaco, A., Tatullo, M., Casale, R., Limone, A., Balestrieri, M. L., Campanile, G. J (2019) Antioxidant and Anti-Inflammatory Activities of Buffalo Milk δ-Valerobetaine.

Agric Food Chem. 67(6):1702-1710. doi: 10.1021/acs.jafc.8b07166.

D'Onofrio, N., Mele, L., Martino, E., Salzano, A., Restucci, B., Cautela, D., Tatullo, M., Balestrieri, M. L., Campanile, G. (2020) Synergistic Effect of Dietary Betaines on SIRT1-Mediated Apoptosis in Human Oral

Squamous Cell Carcinoma Cal 27. Cancers (Basel).12(9):2468. doi: 10.3390/cancers12092468.

D'Onofrio, N., Cacciola, N.A., Martino, E., Borrelli, F., Fiorino, F., Lombardi, A., Neglia, G., Balestrieri, M. L., Campanile, G. (2020) ROS-Mediated Apoptotic Cell Death of Human Colon Cancer LoVo Cells by Milk

δ-Valerobetaine. Sci Rep. 10(1):8978. doi: 10.1038/s41598-020-65865-6.

Vlahopoulos, S., Boldogh, I., Casola, A., Brasier, A. R. (1999). Nuclear factor-kappaB-dependent induction of interleukin-8 gene expression by tumor necrosis factor alpha: evidence for an antioxidant sensitive activating pathway distinct from nuclear translocation. Blood. 94 (6): 1878–89. doi:10.1182/blood.V94.6.1878.418k03_1878_1889.

David, F., Farley, J., Huang, H., Lavoie, J. P., Laverty, S. (2007). Cytokine and chemokine gene expression of IL-1beta stimulated equine articular chondrocytes. Vet Surg. 36 (3): 221–27. doi:10.1111/j.1532-950X.2007.00253.x.

Park, S. W., Jun, H. O., Kwon, E., Yun, J. W., Kim, J. H., Park, Y. J., Kang, B. C., Kim, J. H. (2017) Antiangiogenic effect of betaine on pathologic retinal neovascularization via suppression of reactive oxygen species-mediated vascular endothelial growth factor signaling. Vascul Pharmacol.90:19-26. doi: 10.1016/j.vph.2016.07.007.

Lee, I. (2021) Regulation of Cytochrome c Oxidase by Natural Compounds Resveratrol, (–)-Epicatechin, and Betaine. Cells. 10, 1346.

Kalachniuk, L., Fedyshyn, P., Smirnov, O., Prys-Kadenko, V., Palonko, R., Arnauta, O. (2021). Bio protectors' effect on the composition of some amino acids under alcohol-induced oxidative stress. EUREKA:

LifeSciences, 4, 50–57. doi:

Received: 07.09.2021

Revised: 06.10.2021

Signed for publishing: 08.10.2021



  • There are currently no refbacks.

Лицензия Creative Commons
This journal is available according to the Creative Commons License «Attribution» («Атрибуція») 4.0 Global (CC-BY).