Combination of hydrogel-toluidine blue and light 600 nm for inactivation of Staphylococcus aureus in vitro

P. Virych, O. Nadtoka, N. Kutsevol
Taras Shevchenko National University of Kyiv, Kyiv; Taras Shevchenko National University of Kyiv, Kyiv; Taras Shevchenko National University of Kyiv, Kyiv

Abstract


Skin damage is accompanied by bacterial infection of the wound. Different materials are used for accelerate tissue regeneration and minimize bacterial contamination. Also it is prevent the penetration of bacteria to damaged tissues. After the emergence of antibiotic-resistant strains of microorganisms began the search for alternative means of their inactivation. Photosensitizers are used for this purpose. Their maxima of optical absorbance are in the red and infrared regions. The use of such substances provides powerful bactericidal effects, but with low toxicity to
surrounding tissues. The aim of the investigation is to determine the effectiveness of combining hydrogels with toluidine blue and irradiation by
light of 600 nm to inhibit the in vitro of Staphylococcus aureus growth. Equilibrium is not formed after incubation of hydrogels with toluidine blue
after 3 h in aqueous solution. During this time, 57 and 43 % of the photosensitizer is desorbed from the hydrogels PAA and D-PAA, respectively.
Process rate depends on the type of polymer. Desorption of TB from D-PAA is 30% faster. Irradiation of the suspension of S. aureus by light of 600
nm reduced the CFU amount by 25 % at a dose more than 4 J/ml. Short incubation (20 min) of the PAA and D-PAA hydrogels in the bacterial
suspension and light irradiation (600 nm), the amount of CFU are reduced by 33% and 15 %, respectively. Increasing the incubation time of PAA
does not increase the bactericidal effect. Exposure of 80 min D-PAA with TB in a suspension of S. aureus, followed by light irradiation provides
inactivation of 50 % CFU. Thus, the D-PAA system with toluidine blue in combination with 600 nm light can be used to inactivate S. aureus.

Keywords


bacteria photoinactivation, toluidine blue, polyacrylamide, dextran-polyacrylamide, photodynamic therapy

Full Text:

PDF>PDF

References


Falanga V. Chronic Wounds: Pathophysiologic and Experimental ConsiderationsJ Invest Dermatol, 1993;100(5):721-725. doi:10.1111/1523-1747.ep12472373

Powers JG, Higham C, Broussard K, Phillips TJ. Wound healing and treating wounds: Chronic wound care and management. J Am Acad Dermatol, 2016;74(4):607-626. doi:10.1016/j.jaad.2015.08.070

Edwards R, Harding K. Bacteria and wound healing. Curr Opin Infect Dis, 2004;17(2): 91-96. doi:10.1097/00001432-200404000-00004

Negut I, Grumezescu V, Grumezescu AM. Treatment Strategies for Infected Wounds. Molecules, 2018;23(9):2392. doi:doi.org/10.3390/molecules23092392

Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev, 2010;74(3):417-433. doi:10.1128/MMBR.00016-10

Cieplik F, Deng D, Crielaard W, Buchalla W, Hellwig E, Al-Ahmad A, Maisch T. Antimicrobial photodynamic therapy – what we know and what we don't. Crit Rev Microbiol, 2018;44(5):571-589. doi:10.1080/1040841X.2018.1467876

Walter AB, Simpson J, Jenkins JL, Skaar EP, Jansen ED. Optimization of optical parameters for improved photodynamic therapy of Staphylococcus aureus using endogenous coproporphyrin III. Photodiagnosis Photodyn Ther, 2020;29: 101624. doi:10.1016/j.pdpdt.2019.101624

Grinholc M, Szramka B, Olender K, Graczyk A. Bactericidal effect of photodynamic therapy against methicillin-resistant Staphylococcus aureus strain with the use of various porphyrin photosensitizers. Acta

Biochim Pol, 2007;54(3):665–670.

Sabino CP, Wainwright M, Dos Anjos C, Sellera FP, Baptista MS, Lincopan N, Ribeiro MS. Inactivation kinetics and lethal dose analysis of antimicrobial blue light and photodynamic therapy. Photodiagnosis Photodyn Ther, 2019;28:186-191. doi:10.1016/j.pdpdt.2019.08.022

Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kędzierska E, Knap-Czop K, Kotlińska J, Michel O, Kotowski K, Kulbacka J. Photodynamic therapy – mechanisms, photosensitizers and combinations. Biomed Pharmacother, 2018;106:1098-1107. doi:10.1016/j.biopha.2018.07.049

Gao W, Zhang Y, Zhang Q, Zhang L. Nanoparticle-Hydrogel: A Hybrid Biomaterial System for Localized Drug Delivery. Ann Biomed Eng, 2016;44(6):2049-2061. doi:10.1007/s10439-016-1583-9

Wang W, Lu K, Yu C, Huang Q, Du Y. Nano-drug delivery systems in wound treatment and skin regeneration. J Nanobiotechnology, 2019;17(1):82. doi:10.1186/s12951-019-0514-y

Wang Y, Cheetham A, Angacian G, Su H, Xie L, Cui H. Peptidedrug conjugates as effective prodrug strategies for targeted delivery. Adv Drug Deliv Rev, 2017;110-111:112-26. doi:10.1016/j.addr.2016.06.015

Narayanaswamy R, Torchilin V. Hydrogels and Their Applications in Targeted Drug Delivery. Molecules, 2019;24(3):603. doi:10.3390/molecules24030603

Francesko A, Petkova P, Tzanov T. Hydrogel Dressings for Advanced Wound Management. Curr Med Chem, 2018;25(41):5782-5797. doi:10.2174/0929867324666170920161246

Zhao X, Wu H, Guo B, Dong R, Qiu Y, Ma PX. Antibacterial antioxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials,

;122:34-47. doi:10.1016/j.biomaterials.2017.01.011

Abrahamse H, Hamblin R. New photosensitizers for photodynamic therapy. Biochem J. 2016;473(4):347-364. doi:10.1042/BJ20150942

Ding C, Zhang F, Gao Y, Li Y, Cheng D, Wang J, Mao L. Antibacterial Photodynamic Treatment of Porphyromonas gingivalis with Toluidine Blue O and a NonLaser Red Light Source Enhanced by Dihydroartemisinin. Photochem Photobiol, 2021;97(2): 377-384. doi:10.1111/php.13333

Shen J, Liang Q, Su G, Zhang Y, Wang Z, Baudouin C, Labbé A. In Vitro Effect of Toluidine Blue Antimicrobial Photodynamic Chemotherapy on Staphylococcus epidermidis and Staphylococcus aureus Isolated from Ocular Surface Infection. Transl Vis Sci Technol, 2019;8(3): 45. doi:10.1167/tvst.8.3.45

aureus strain with the use of various porphyrin photosensitizers. Acta

Biochim Pol, 2007;54(3):665–670.

Sabino CP, Wainwright M, Dos Anjos C, Sellera FP, Baptista MS,

Lincopan N, Ribeiro MS. Inactivation kinetics and lethal dose analysis of

antimicrobial blue light and photodynamic therapy. Photodiagnosis

Photodyn Ther, 2019;28:186-191. doi:10.1016/j.pdpdt.2019.08.022

Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kędzierska E,

Knap-Czop K, Kotlińska J, Michel O, Kotowski K, Kulbacka J. Photodynamic

therapy – mechanisms, photosensitizers and combinations. Biomed

Pharmacother, 2018;106:1098-1107. doi:10.1016/j.biopha.2018.07.049

Gao W, Zhang Y, Zhang Q, Zhang L. Nanoparticle-Hydrogel: A

Hybrid Biomaterial System for Localized Drug Delivery. Ann Biomed Eng,

;44(6):2049-2061. doi:10.1007/s10439-016-1583-9

Wang W, Lu K, Yu C, Huang Q, Du Y. Nano-drug delivery systems

in wound treatment and skin regeneration. J Nanobiotechnology,

;17(1):82. doi:10.1186/s12951-019-0514-y

Wang Y, Cheetham A, Angacian G, Su H, Xie L, Cui H. Peptidedrug conjugates as effective prodrug strategies for targeted delivery. Adv Drug Deliv Rev, 2017;110-111:112-26. doi:10.1016/j.addr.2016.06.015

Narayanaswamy R, Torchilin V. Hydrogels and Their Applications in Targeted Drug Delivery. Molecules, 2019;24(3):603. doi:10.3390/molecules24030603

Francesko A, Petkova P, Tzanov T. Hydrogel Dressings for Advanced Wound Management. Curr Med Chem, 2018;25(41):5782-5797. doi:10.2174/0929867324666170920161246

Zhao X, Wu H, Guo B, Dong R, Qiu Y, Ma PX. Antibacterial antioxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials, 2017;122:34-47. doi:10.1016/j.biomaterials.2017.01.011

Abrahamse H, Hamblin R. New photosensitizers for photodynamic therapy. Biochem J. 2016;473(4):347-364. doi:10.1042/BJ20150942

Ding C, Zhang F, Gao Y, Li Y, Cheng D, Wang J, Mao L. Antibacterial Photodynamic Treatment of Porphyromonas gingivalis with Toluidine Blue O and a NonLaser Red Light Source Enhanced by Dihydroartemisinin. Photochem Photobiol, 2021;97(2): 377-384. doi:10.1111/php.13333

Shen J, Liang Q, Su G, Zhang Y, Wang Z, Baudouin C, Labbé A. In Vitro Effect of Toluidine Blue Antimicrobial Photodynamic Chemotherapy on Staphylococcus epidermidis and Staphylococcus aureus Isolated from Ocular Surface Infection. Transl Vis Sci Technol, 2019;8(3): 45. doi:10.1167/tvst.8.3.45

Received: 03.09.2021

Revised: 05.10.2021

Signed for publishing: 06.10.2021




DOI: http://dx.doi.org/10.17721/1728_2748.2021.86.23-27

Refbacks

  • There are currently no refbacks.


Лицензия Creative Commons
This journal is available according to the Creative Commons License «Attribution» («Атрибуція») 4.0 Global (CC-BY).