Vegetative traits of Sedum L. (Crassulaceae) species cuttings growing on green roof in Kyiv city

A. Vozna, V. Berezkina, O. Vasheka
Taras Shevchenko National University of Kyiv, Kyiv; Taras Shevchenko National University of Kyiv, Kyiv; Taras Shevchenko National University of Kyiv, Kyiv


The traits of vegetative parts (the length of the overground part of the cutting (shoot), the length of the underground part of the cutting (rhizome), the volume of the overground part of the cutting (shoot), the volume of the root system, the weight of the cutting (plant), and absolute cover area) for cuttings of five Sedum species (S. ewersii Ledeb., S. spathulifolium Hook. 'Cape Blanco', S. kamtschaticum Fisch. 'Variegatum', Sedum spurium M. Bieb., S. rupestre L.) were determined. The plants were cultivated for 86 days on a low roof (height = 6 m), in a soil mixture in 7-liter containers with a substrate height of 7 cm.
The percentage of rooted cuttings reached 100% for S. ewersii, S. kamtschaticum 'Variegatum', S. spurium, S. rupestre and 66 % for S. spathulifolium 'Cape Blanco'. The highest ability to create absolute substrate cover was noted for species with creeping stems and flattened succulent leaves – S. kamtschaticum 'Variegatum' and S. spurium. This index was slightly lower for a species with vertical stems and stiff pointed, succulent leaves (S. rupestre), and plants with decumbent stems, that bear only the terminal rosettes of leaves (S. ewersii). The ability to substrate consolidation was not significantly different for S. ewersii, S. kamtschaticum 'Variegatum', S. spurium. Root development was lower for S. rupestre and very weak for S. spathulifolium 'Cape Blanco'. The results support planting S. ewersii, S. kamtschaticum 'Variegatum', S. rupestre, S. spurium with fresh harvested cuttings without previous rooting. Cuttings of S. spathulifolium 'Cape Blanco' increased their mass and projective cover slowly and required rooting before planting in a green roof


Sedum, cuttings, green roofs, absolute substrate cover

Full Text:



Halevych O.Ie. Bioloho-ekolohichni zasady formuvannia roslynnykh kompozytsii ploskykh zelenykh dakhiv ekstensyvnoho typu (na prykladi m. Lvova). Avtoreferat dysertatsii na zdobuttia naukovoho stupenia kandydata silskohospodarskykh nauk. – Lviv. 2021; 27.

Halevych O.Ie. Vydovyi sklad sukulentiv v ozelenenni ploskykh dakhiv m. Lvova. Aktualni problemy rehionalnykh doslidzhen: materialy IV Mizhnarodnoi naukovo-praktychnoi internet-konferentsii. – Lutsk. 2019; 386-390.

Halevych O.Ie. Pryntsypy klasyfikatsii zelenykh dakhiv. Naukovi osnovy pidvyshchennia produktyvnosti ta biolohichnoi stiikosti lisovykh ta urbanizovanykh ekosystem: materialy 66-yi naukovo-tekhnichnoi konferentsii profesorsko-vykladatskoho skladu, naukovykh pratsivnykiv, doktorantiv ta aspirantiv za pidsumkamy naukovoi diialnosti u 2015 r. – Lviv: RVV NLTU Ukrainy. 2016; 26-29.

Berger A. Crassulaceae. In Engler, A. & Prantl, K., Die natürlichen Pflanzenfamilien, ed. 2. 1930; 18a: 352-483. Leipzig, Engelmann.

Berndtsson J.C. Green roof performance towards management of runoff water quantity and quality. A review Ecological Engineering. 2010; 36: 351–360.

Butler C, Bond K, CM O. Plasticity in CAM-C3 photosynthesis in eight species of green roof Sedum. In: Cities Alive: Ninth Annual Green Roof and Wall Conference. 2011. Philadelphia, PA.

Catalanoa Ch, Laudicinab V.A, Badaluccob L, Guarinoc R. Some European green roof norms and guidelines through the lens of biodiversity: Do ecoregions and plant traits also matter? Some Ecological Engineering. 2018; 115: 15–26.

Dytham C. Choosing and Using Statistics: A Biologist's Guide. WileyBlackwell. 2011; 3nd ed.

Getter K.L, Rowe D.B. Substrate depth influences sedum plant community on a green roof. 2009; 44(2). 401e407.

He Y., Yu H., Ozaki A., Dong N., Zheng Sh. Influence of plant and soil layer on energy balance and thermal performance of green roof system. Energy. 15 December 2017; 14: 1285-1299.

Lehmann S. Low carbon districts: Mitigating the urban heat island with green roof infrastructure City. Culture and Society. 2014; 5: 1–8.

Monterusso M.A, Rowe D.B. and Rugh C.L. Establishment and Persistence of Sedum spp. and Native Taxa for Green Roof Applications. HortScience. 2005; 40(2): 391–396.

Perini K, Pérez G, Chiesa G, Kolokotroni M, Heiselberg P. (eds). Ventilative Cooling and Urban Vegetation. Innovations in Ventilative Cooling. PoliTO Springer Series. Springer, Cham. 09 June 2021; 213-234. doi: 10.1007/978-3-030-72385-9_10

Rayner J.P, Farrell C, Raynor K.J, Murphy S.M, Williams N.S.G. Plant establishment on a green roof under extreme hot and dry conditions. The importance of leaf succulence in plant selection Urban Forestry & Urban Greening. 2016; 15: 6–14. doi: 10.1016/j.ufug.2015.11.004

Renterghem T.V, Botteldooren D. In-situ measurements of sound propagating over extensive green roofs. Building and Environment. March 2011; 46(3): 729-738.

Stovin V. The potential of green roofs to manage Urban Stormwater. Water and Environment Journal. 2010; 24: 192-199. doi: 10.1111/j.1747-6593.2009.00174.x

Suszanowicz D, Kolasa Więcek A. The Impact of Green Roofs on the Parameters of the Environment in Urban Areas–Review. Atmosphere. 2019; 10(12): 792. doi: 10.3390/atmos10120792

The Plant List (2013). Version 1.1. Published on the Internet; (accessed 31st August 2021).

Villarreal E.L, Bengtsson L. Response of a Sedum green-roof to individual rain events. Ecological Engineering. 2005; 25: 1–7.

WFO (2021): World Flora Online. Published on the Internet; (accessed 14 September 2021).

Received: 01.09.2021

Revised: 04.10.2021

Signed for press: 05.10.2021



  • There are currently no refbacks.

Лицензия Creative Commons
This journal is available according to the Creative Commons License «Attribution» («Атрибуція») 4.0 Global (CC-BY).