Ultrastructure of mesophyll cells of Arabidopsis (Arabidopsis thaliana L.) after hyperthermia

Yu. Akimov
M. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Kyiv


The influence of hyperthermia (33 ºC, 2 days) on the ultrastructure of palisade cells of mesophyll of the first rosette leaves of arabidopsis Columbia 0 ecotype (Col-0, phases 1.02–1.04) was studied. Samples of 12-day-old seedlings were selected in 2 variants: control and 2 days 33 ºC. Seedlings of the control variant were grown in a growth chamber with a photoperiod of 15/9 hours. (day/night), illumination 5.5 klx, 75 % humidity and temperature 22 ºC. In the experimental variant containers with 9-day-old seedlings were transferred for 2 days to a growth chamber with a preset light 5.5 klx and temperature 33 ºC, with a photoperiod of 15/9 hours. The conducted ultrastructural analysis allowed to reveal the spectrum of rearrangements of palisade cells after two-day action of high (33 ºC) temperature. It was shown that the high temperature negatively affected size of mesophyll palisade cells, the cross-sectional area of which was 12 % smaller than in the control. Chloroplasts show an increase in granality: in the control granas contained 6–10 thylakoids, often combining into larger granas, up to 20 or more thylakoids in the intersection zone, while after two-day hyperthermia the granas contained 20 or more thylakoids, often forming giant granas of 60 and more thylakoids, the average cross-sectional area of starch granules decreased by almost half: 0.99 μm2 compared to 1.92 μm2 in the control, the diameter of plastoglobuli increased 3–4 times: to 100–200 nm compared to 30–50 nm in the control. In mitochondria, there was a decrease in the partial volume of the cristae, enlightenment of the matrix, the cross-section of mitochondria increased at least twice: 1 μm2 compared to 0.44 μm2 in the control. The mean cross-sectional area of peroxisomes also increased at least twice, to 1.36 μm2 compared with 0.77 μm2 in the control.


Arabidopsis thaliana, mesophyll, heat stress, hyperthermia, transitory starch, chloroplast, mitochondria, peroxisome

Full Text:



Atkin O.K., Loveys B.R., Atkinson L.J., Pons T.L. Phenotypic plasticity and growth temperature: understanding interspecific variability // J. Exp. Bot. – 2006. – V. 57 (2). – P. 267-281.

Bano C. Amist N., Singh B. Morphological and Anatomical Modifications of Plants for Environmental Stresses. In: Molecular plant abiotic stress: biology and biotechnology / Editors: Dr. Aryadeep Roychoudhury, Department of Biotechnology, St. Xavier's College, Bengal, India, Dr. Durgesh Kumar Tripathi, Amity Institute of Organic Agriculture (AIOA), Amity University, Noida, India, John Wiley & Sons, Ltd, 2019. P. 29-44.

Boyes D., Zayed A., Ascenzi R., McCaskill A., Hoffman N., Davis K. Gorlach J. Growth Stage-Based Phenotypic Analysis of Arabidopsis: A Model for High Throughput Functional Genomics in Plants // The Plant Cell – 2001. – V. 13 – P. 1499-1510.

Cordoba-Pedregosa M., Gonzalez-Reyes J.A., Canadillas M., Navas P., Cordoba F. Role of apoplastic and cell wall peroxidases on the stimulation of root elongation by ascorbate // Plant Physiology. – 1996. – V. 112 – pp.1119–1125.

Cui S., Hayashi Y., Otomo M., Mano S, Oikawa K, Hayashi M, Nishimura M. Sucrose Production Mediated by Lipid Metabolism Suppresses the Physical Interaction of Peroxisomes and Oil Bodies during Germination of Arabidopsis thaliana // J Biol Chem. – 2016. – V.291, №38 – P. 19734–19745.

Djanaguiraman M., Prasad, P. V. High temperature stress. In: Plant Genetic Resources and Climate Change / Editors: M. Jackson, B.V. FordLloyd, M.L. Perry, 2014. P.201-220.

Dong S., Zhang J., Beckles D.M. A pivotal role for starch in the reconfiguration of 14C-partitioning and allocation in Arabidopsis thaliana under short-term abiotic stress Sci Rep. – 2018. – V.8, №1 – P. 9314.

Donnelly P., Bonetta D., Tsukaya H., Dengler R., Dengler N. Cell Cycling and Cell Enlargement in Developing Leaves of Arabidopsis // Developmental Biology – 1999. – V.215 – P. 407–419.

Falcone, D.L., Ogas, J.P., Somerville, C.R. Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition // BMC Plant Biol –2004. – V.4, 17 – P.1-15.

Granier C., Massonnet C., Turc O., Muller B., Chenu K., Tardieu F. Individual leaf development in Arabidopsis thaliana a stable thermal-time based programme // Ann Bot. – 2002. – V.89, №5 – P.595–604.

Gulen H., Eris A. Effect of heat stress on peroxidase activity and total protein content in strawberry plants // Plant Science. – 2004. – V. 166. – P.739–744.

Hao L., Guo L., Li R., Cheng Y., Huang L., Zhou H., Xu M., Li F., Zhang X., Zheng Y., Responses of photosynthesis to high temperature stress associated with changes in leaf structure and biochemistry of blueberry

(Vaccinium corymbosum L.) // Scientia Horticulturae. – 2019 – V. 246 – P. 251-264.

Herritt M.T., Fritschi F.B. Characterization of Photosynthetic Phenotypes and Chloroplast Ultrastructural Changes of Soybean (Glycine max) in Response to Elevated Air Temperatures // Front. Plant Sci. – 2020. – V.11(153) – P.1-16.

Huang Y.-W., Zhou Z.-Q., Yang H.-X., Wei C.-X., Wan Y.-Y., Wang X.-J., Bai J. -G. Glucose application protects chloroplast ultrastructure in heatstressed cucumber leaves through modifying antioxidant enzyme activity // Biol Plant – 2015. – V.59 – P. 131–138.

Jin B., Wang L., Wang J., Jiang K.Z., Wang Y., Jiang X.X., Ni C.Y., Wang Y.L., Teng N.J. The effect of experimental warming on leaf functional traits, leaf structure and leaf biochemistry in Arabidopsis thaliana // BMC Plant Biol. – 2011. – V. 11. – P.35-45.

Jouili, H., Bouazizi, H., El Ferjani, E. Plant peroxidases: biomarkers of metallic stress // Acta Physiol Plant. – 2011. – V.33 – P. 2075.

Kalve S., Fotschki J., Beeckman T., Vissenberg K., Beemster G. Three-dimensional patterns of cell division and expansion throughout the development of Arabidopsis thaliana leaves // J Exp Bot. – 2014. – V. 65, № 22. – P. 6385–639.

Kao Y.T., Gonzalez B.L., Bartel B. Peroxisome Function, Biogenesis, and Dynamics in Plants // Plant Physiology – 2018. – V. 176 – P. 162–177.

Kislyuk, I.M., Bubolo, L.S., Kamentseva I.E., Kotlova, E.R., and Sherstneva, O.A., Heat shock increases thermotolerance of photosynthetic electron transport and the content of chloroplast membranes and lipids in wheat leaves // Russ. J. Plant Physiol. – 2007. – V. 54 – P. 456–463.

Klymchuk D.O., Brown C.S. Chapman D.K., Vorobyova T.V., Martyn G.M. Cytochemical localization of calcium in soybean root cap cells in microgravity // Adv. Space Res. – 2001. – V. 27, № 5. – P. 967-972.

Kotak S., Larkindale J., Lee U., von Koskull-Doring P., Vierling E., Scharf K-D. Complexity of the heat stress response in plants // Curr Opin Plant Biol. – 2007. – V.10, №3 – P. 301-316.

Mathur J., Shaikh A., Mathur N. Peroxisome Mitochondria Interrelations in Plants. In: Proteomics of Peroxisomes. Subcellular Biochemistry / Editors: del Rio L., Schrader M., 2018. P. 417-433.

Munné-Bosch S., Alegre L. The Function of Tocopherols and Tocotrienols in Plants // Critical Reviews in Plant Sciences – 2002. – V. 21, № 1 – P. 31-57.

Nazdar T., Tehranifar A., Nezami A., Nemati H., Samiei L. Physiological and anatomical responses of calendula (Calendula officinalis L.) cultivars to heat-stress duration // The Journal of Horticultural Science and Biotechnology. – 2018.

Parrotta L., Aloisi I., Faleri C., Romi M., Del Duca S., Cai G. Chronic heat stress affects the photosynthetic apparatus of Solanum lycopersicum L. cv Micro-Tom // Plant Physiology et Biochemistry – 2020.

Pyke K., Marrison J., Leech A. Temporal and Spatial Development of the Cells of the Expanding First Leaf of Arabidopsis thaliana (L.) Heynh. // Journal of Experimental Botany – 1991. – V. 42, №. 244 – P. 1407-1416.

Schollert M., Kivimäenpää M., Valolahti H. M., Rinnan, R. Climate change alters leaf anatomy, but has no effects on volatile emissions from arctic plants // Plant Cell Environ. – 2015. – V. 38. – P. 2048–2060.

Shai N., Schuldiner M., Zalckvar E. No peroxisome is an island – Peroxisome contact sites // Biochim Biophys Acta – 2016. – V.1863, №5 – P. 1061–1069.

Skryhan K., Gurrieri L., Sparla F., Trost P., Blennow A. Redox Regulation of Starch Metabolism // Front Plant Sci – 2018. – V.9 – P. 1344.

Thalmann M., Santelia D. Starch as a determinant of plant fitness under abiotic stress // New Phytologist – 2017. – V. 214 – P. 943–951.

Wang Q.-L., Chen J.-H., He N.-Y. and Guo F.-Q. Metabolic Reprogramming in Chloroplasts under Heat Stress in Plants // Int J Mol Sci. – 2018. – V.19(3) – P.849.

Wang L., Ma K.B., Lu Z.G. et al. Differential physiological, transcriptomic and metabolomic responses of Arabidopsis leaves under prolonged warming and heat shock // BMC Plant Biol – 2020. – V.20 – P.86.

Wingler A. Transitioning to the Next Phase: The Role of Sugar Signaling throughout the Plant Life Cycle // Plant Physiology – 2018. – V. 176 (2) – P. 1075–1084.

Xalxo R., Yadu B., Chandra J., Chandrakar V., Sahu K. (2020). Alteration in Carbohydrate Metabolism Modulates Thermotolerance of Plant under Heat Stress. In: Heat stress tolerance in plants : physiological, molecular and genetic perspectives / Editors: Shabir Hussain Wani, Vinay Kumar, 2020. P.77-115.

Yan Z, Zhao M, Wu X, Zhang J (2020) Metabolic Response of Pleurotus ostreatus to Continuous Heat Stress // Front. Microbiol. – 2020. –V.10 – P.3148.

Yuan L, Tang L, Zhu S, Hou J, Chen G, Liu F, Liu S., Wang C. Influence of heat stress on leaf morphology and nitrogen–carbohydrate metabolisms in two wucai (Brassica campestris L.) genotypes // Acta Soc Bot Pol. – 2017. – V. 86(2) – P.3554.

Zagorchev L., Seal C., Kranner I. And Odjakova M. A Central Role for Thiols in Plant Tolerance to Abiotic Stress // Int. J. Mol. Sci. – 2013 – V.14 – P.7405-7432.

Zhang R., Wise R., Struck K., Sharke T. Moderate heat stress of Arabidopsis thaliana leaves causes chloroplast swelling and plastoglobule formation // Photosynth Res – 2010. – V.105. – P.123–134.

Zheng Y. P., Li R. Q., Guo L. L., Hao L. H., Zhou H. R., Li F., Peng Z. P., Cheng D. J., Xu M. Temperature Responses of Photosynthesis and Respiration of Maize (Zea mays) Plants to Experimental Warming // Russ J Plant Physiol. – 2018. – V.65. – P.524–531.

Źrуbek-Sokolnik A. Temperature Stress and Responses of Plants. In: Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change / Editors: P. Ahmad and M.N.V. Prasad, 2011. P. 113-134.

Received: 04.05.2021

Revised: 04.06.2021

Signed for the press: 04.06.2021

DOI: http://dx.doi.org/10.17721/1728_2748.2021.85.15-22


  • There are currently no refbacks.

Лицензия Creative Commons
This journal is available according to the Creative Commons License «Attribution» («Атрибуція») 4.0 Global (CC-BY).