Ion currents registration through LCC-channels of the nuclear membrane: a chronobiological aspect

O. Tarnopolskaya, A. Kotliarova
Bogomolets Institute of Physiology NASU, Kyiv; Taras Shevchenko National University of Kyiv, Kyiv


For seven years of researching the transport systems of nuclear membranes using the patch-clamp method, we observed a certain pattern: in winter, this method's efficiency significantly decreased. Since different seasons are characterized by different light and temperature indicators, we decided to pay attention to the latter's possible impact on the success of the research. Therefore, the purpose of this work was to test the influence of seasonal factors such as changes in daylight hours, temperature, atmospheric pressure, precipitation, and cloudiness on the quality of patchclamp recordings of ion currents through the LCC channels of the nuclear membrane of cardiomyocytes and cerebellar Purkinje neurons. We assumed that with decreasing daylength and decreasing temperature, the patch-clamp registrations' qualitative and quantitative indicators also decrease. We applied Pearson's correlation analysis with initial data on daylight hours, meteorological conditions, and calculated progress of registrations (%) for a specific day to test this assumption. Based on the results of this analysis, we found out that there is a direct pronounced linear dependence of the quality and number of registrations on the length of daylight hours (r = 0.6) and temperature (r = 0.6), as well as a weak inverse dependence on cloudiness (r = 0.3). Analysis of variance (ANOVA) also confirmed a significantly greater success of registrations performed in the summer compared to the winter of the same year. The obtained results can become the basis for optimizing the research activities of working
groups studying intracellular transport systems' functioning by electrophysiological methods, in particular, patch-clamp.


biorhythms, chronobiology, meteorological conditions, patch-clamp, nuclear membrane, ion channels, LCC channels

Full Text:



Mauger, J.P. Role of the nuclear envelope in calcium signalling. Biol. Cell 2012, 104(2), 70–83, doi:10.1111/boc.201100103.

Zuleger, N., Korfali, N., Schirmer, E.C. Inner nuclear membrane protein transport is mediated by multiple mechanisms. Biochem. Soc. Trans. 2008, 36(6), 1373–1377, doi:10.1042/BST0361373.

Mazzanti, M., Bustamante, J.O., Oberleithner, H. Electrical dimension of the nuclear envelope. Physiol. Rev. 2001, 81(1), 1–19, doi:10.1152/physrev.2001.81.1.1.

Grossman, E., Medalia, O., Zwerger, M. Functional Architecture of the Nuclear Pore Complex. Annu. Rev. Biophys. 2012, 41(1), 557–584, doi:10.1146/annurev-biophys-050511-102328.

Kabachinski, G., Schwartz, T.U. The nuclear pore complex – Structure and function at a glance. J. Cell Sci. 2015, 128(3), 423–429, doi:10.1242/jcs.083246.

Beck, M., Hurt, E. The nuclear pore complex: Understanding its function through structural insight. Nat. Rev. Mol. Cell Biol. 2017, 18(2), 73–89, doi:10.1038/nrm.2016.147.

Mazzanti, M., DeFelice, L.J., Cohen, J., Malter, H. Ion channels in the nuclear envelope. Nature 1990, 343(6260), 764–767, doi:10.1038/343764a0.

Matzke, A.J.M., Weiger, T.M., Matzke, M. Ion channels at the nucleus: Electrophysiology meets the genome. Mol. Plant 2010, 3(4), 642–652, doi:10.1093/mp/ssq013.

Marchenko, S., Thomas, R. Nuclear Ca2+ signalling in cerebellar Purkinje neurons. Cerebellum 2006, 5(1), 36–42, doi:10.1080/14734220600554438.

Marchenko, S.M., Yarotskyy, V. V., Kovalenko, T.N., Kostyuk, P.G., Thomas, R.C. Spontaneously active and InsP3-activated ion channels in cell nuclei from rat cerebellar Purkinje and granule neurones. J. Physiol. 2005, 565(3), 897–910, doi:10.1113/jphysiol.2004.081299.

Kotliarova, A.B., Kotyk, O.A., Polishchuk, A.O., Pavlova, N.I., Marchenko, S.M. Identification of ion channels in the nuclear envelope of cardiomyocytes. The Animal Biology 2016, 18(4), 157.

Fedorenko, O.A., Marchenko, S.M. Ion channels of the nuclear membrane of hippocampal neurons. Hippocampus 2014, 24(7), 869–876, doi:10.1002/hipo.22276.

Subramanian, K., Meyer, T. Calcium-induced restructuring of nuclear envelope and endoplasmic reticulum calcium stores. Cell 1997, 89(6), 963–971, doi:10.1016/S0092-8674(00)80281-0.

Gerasimenko, O., Gerasimenko, J. New aspects of nuclear calcium signalling. J. Cell Sci. 2004, 117, 3087–3094.

Islam, M.S. Calcium Signaling: From Basic to Bedside. In Advances in Experimental Medicine and Biology; Springer New York LLC, 2020; Vol. 1131, pp. 1–6.

Martin, N., Bernard, D. Calcium signaling and cellular senescence. Cell Calcium 2018, 70 16–23, doi:10.1016/j.ceca.2017.04.001.

Zheng, J., Zeng, X.H., Wang, S.Q. Calcium ion as cellular messenger. Sci. China Life Sci. 2015, 58(1), 1–5, doi:10.1007/s11427-014-4795-y.

Carafoli, E., Krebs, J. Why calcium? How calcium became the best communicator. J. Biol. Chem. 2016, 291(40), 20849–20857, doi:10.1074/jbc.R116.735894.

Marius, P., Guerra, M.T., Nathanson, M.H., Ehrlich, B.E., Leite, M.F. Calcium release from ryanodine receptors in the nucleoplasmic reticulum. Cell Calcium 2006, 39(1), 65–73, doi:10.1016/j.ceca.2005.09.010.

Kotliarova, A. B., Man'ko, V. V. IP3-sensitive Ca(2+)-channels of endoplasmic reticulum in secretory cells of the rat exorbital lacrimal gland. Ukrains'kyi biokhimichnyi zhurnal 2013, 85(5), 27–36.

Santulli, G., Nakashima, R., Yuan, Q., Marks, A.R. Intracellular calcium release channels: an update. J. Physiol. 2017, 595(10), 3041–3051, doi:10.1113/JP272781.

Berridge, M.J. The inositol trisphosphate/calcium signaling pathway in health and disease. Physiol. Rev. 2016, 96(4), 1261–1296, doi:10.1152/physrev.00006.2016.

Voolstra, O., Huber, A. Ca2+ Signaling in Drosophila Photoreceptor Cells; 2020; Vol. 1131; ISBN 9783030124564.

Bootman, M.D., Fearnley, C., Smyrnias, I., MacDonald, F., Roderick, H.L. An update on nuclear calcium signalling. J. Cell Sci. 2009, 122(14), 2337–2350, doi:10.1242/jcs.028100.

Conforti, L. Patch-clamp techniques; Fourth Edi.; Elsevier Inc., 2012; ISBN 9780123877383.

Kotyk, O.A., Kotliarova, A.B., Polishchuk, A.O., Marchenko, S.M. Single-Channel Ion Currents in the Nuclear Envelope of Rat Cardiomyocytes. Fiziol. Zh. 2016, 62(6), 3–8, doi:10.1615/intjphyspathophys.v8.i4.70.

Hazlerigg, D. The evolutionary physiology of photoperiodism in vertebrates; 1st ed.; Elsevier B.V., 2012; Vol. 199; ISBN 9780444594273.

Malpaux, B., Migaud, M., Tricoire, H., Chemineau, P. Biology of mammalian photoperiodism and the critical role of the pineal gland and melatonin. J. Biol. Rhythms 2001, 16(4), 336–347, doi:10.1177/074873001129002051.

Goldman, B.D. Mammalian photoperiodic system: Formal properties and neuroendocrine mechanisms of photoperiodic time measurement. J. Biol. Rhythms 2001, 16, 283–301.

Walton, J.C., Weil, Z.M., Nelson, R.J. Influence of photoperiod on hormones, behavior, and immune function. Front. Neuroendocrinol. 2011, 32, 303–319.

Котик, О.А., Котлярова, А.Б., Марченко, С.М. Оптимізація методу ізолювання ядер для електрофізіологічних досліджень іонних каналів ядерної мембрани кардіоміоцитів щура. 2018.

Tahara, Y., Aoyama, S., Shibata, S. The mammalian circadian clock and its entrainment by stress and exercise. J. Physiol. Sci. 2017, 67.

Claustrat, B., Leston, J. Melatonin: Physiological effects in humans. Neurochirurgie 2015, 61(2–3), 77–84, doi:10.1016/j.neuchi.2015.03.002.

Carlomagno, G., Minini, M., Tilotta, M., Unfer, V. From implantation to birth: Insight into molecular melatonin functions. Int. J. Mol. Sci. 2018, 19.

Logue, J.A., De Vries, A.L., Fodor, E., Cossins, A.R. Lipid compositional correlates of temperature-adaptive interspecific differences in membrane physical structure. J. Exp. Biol. 2000, 203(14), 2105–2115.

Received: 1.10.2020

Revised: 2.11.2020

Signed for the press: 2.11.2020



  • There are currently no refbacks.

Лицензия Creative Commons
This journal is available according to the Creative Commons License «Attribution» («Атрибуція») 4.0 Global (CC-BY).