Oxidative modification of proteins in rat serum under experimental osteoarthritis and joint administration of a chondroprotector and multiprobiotic

O. Korotkyi, L. Kot, K. Dvorshchenko, L. Ostapchenko
Taras Shevchenko National University of Kyiv, Kyiv; Taras Shevchenko National University of Kyiv, Kyiv; Taras Shevchenko National University of Kyiv, Kyiv; Taras Shevchenko National University of Kyiv, Kyiv

Abstract


One of the actual problems of modern medicine is joint disease. Among them, osteoarthritis occupies an important place. The formation of osteoarthritis is accompanied by the development of inflammation, which leads to damage to all structures of the joint. An important role in inflammatory processes is played by the intensification of free radical processes. As the disease develops, the joints lose their mobility, which leads to a decrease in the quality of life of patients and the development of disability. In this regard, it is important to search for drugs that have regenerative, anti-inflammatory and antiradical properties.
The aim of our study was to investigate the combined effect of chondroitin sulfate and multiprobiotic on the content of oxidative protein modification products and the level of sulfhydryl groups in rat blood serum under conditions of monoiodoacetate-induced osteoarthritis.
The study included participation of white male non-linear rats (weighing 180–240 g) adherence to the general ethical principles of animal
experiments. An experimental osteoarthritis model was created by introducing 1 mg of sodium monoiodoacetate into the knee ligament. Chondroitin sulfate and multiprobiotic were used as therapeutic agents. The content of products of oxidative modification of proteins was determined by the level of carbonyl derivatives, which are manifested in the reaction with 2,4-dinitrophenylhydrazine. The level of total, protein-bound and non-protein sulfhydryl groups was measured by the Elman method.
It was found that under conditions of monoiodoacetate-induced osteoarthritis in the blood serum of rats, the content of products of oxidative modification of proteins increases. The level of neutral aldehyde products (E max = 356 nm) is increased by 2.5 times and neutral ketone products (E max = 370 nm), respectively, by 2,1 times compared to the control. Under the same experimental conditions in the blood serum, the amount of basic aldehyde products (E max = 430 nm) increases by 1.9 times, while the content of the main ketone products (E max = 530 nm) increases by 1,7 times compared to the control groups. In experimental osteoarthritis in the blood serum, the content of sulfhydryl groups decreases: non-protein SH-groups – 1,5 times, protein and general SH-groups – 1,7 times relative to the control. This indicates disturbance of the oxidative-antioxidant balance and the development of oxidative stress in the organism during experimental osteoarthritis. It was shown that the combined administration of chondroitin sulfate and multiprobiotics in animals with experimental osteoarthritis partially restored the above parameters.

Keywords


experimental osteoarthritis, chondroitin sulfate, multiprobiotic, oxidative modification of proteins, blood serum

Full Text:

PDF>PDF

References


Rezus E., Cardoneanu A., Burlui A. et al. The Link Between Inflammaging and Degenerative Joint Diseases. Int J Mol Sci. 2019 Jan. 31; 20(3): 614.

Abramoff B., Caldera F. E. Osteoarthritis: Pathology, Diagnosis, and Treatment Options. Med Clin North Am. 2020 Mar.; 104(2): 293–311.

Man G. S., Mologhianu G. Osteoarthritis pathogenesis – a complex process that involves the entire joint. J. Med. Life. 2014. Vol. 7, № 1. P. 37–41.

O'Neill T. W., McCabe P. S., McBeth J. Update on the epidemiology, risk factors and disease outcomes of osteoarthritis. Best Pract Res Clin Rheumatol. 2018 Apr.; 32(2): 312–326.

Hunter D. J., Bierma-Zeinstra S. Osteoarthritis. Lancet. 2019 Apr. 27; 393(10182): 1745–1759.

Martel-Pelletier J., Farran A., Montell E. et al. Discrepancies in composition and biological effects of different formulations of chondroitin sulfate. Molecules. 2015. Vol. 20, № 3. P. 4277–4289.

Bishnoi M., Jain A., Hurkat P., Jain S. K. Chondroitin sulphate: a focus on osteoarthritis. Glycoconj. J. 2016. Vol. 33, № 5. P. 693–705.

Theocharis A. D., Manou D., Karamanos N. K. The extracellular matrix as a multitasking player in disease. FEBS J. 2019 Aug.; 286(15): 2830–2869.

Honvo G., Bruyère O., Reginster J. Y. Update on the role of pharmaceutical-grade chondroitin sulfate in the symptomatic management of knee osteoarthritis. Aging Clin Exp Res. 2019 Aug.; 31(8): 1163–1167.

Vitetta L., Coulson S., Linnane A. W., Butt H. The gastrointestinal microbiome and musculoskeletal diseases: a beneficial role for probiotics and prebiotics. Pathogens. 2013 Nov. 14; 2(4): 606–26.

Bravo-Blas A., Wessel H., Milling S. Microbiota and arthritis: correlations or cause? Curr. Opin. Rheumatol. 2016. Vol. 28(2). P. 161–167.

Breban M. Gut microbiota and inflammatory joint diseases. Joint Bone Spine. 2016 Dec.; 83(6): 645–649.

Biver E., Berenbaum F., Valdes A. M. et al. Gut microbiota and osteoarthritis management: An expert consensus of the European society for clinical and economic aspects of osteoporosis, osteoarthritis and musculoskeletal diseases (ESCEO). Ageing Res Rev. 2019 Nov.; 55: 100946.

Vplyv okysnoho stresu na riven ekspresii heniv TGF–β i HGF u pechintsi shchuriv v umovakh tryvaloi shlunkovoi hipokhlorhidrii ta za vvedennia multyprobiotyka Cymbiter / K. O. Dvorshchenko ta in. Ukr. biokhim. zhurn. 2013. T. 85, № 5. S. 114–123.

Abdulakhad K. F. A. Doslidzhennia vplyvu multyprobiotykiv hrupy "Symbiter" na sekretornu funktsiiu shlunka u shchuriv v umovakh tryvaloi hiperhastrynemii: avtoref. dys. ….kand. biol. nauk: 03.00.13 / Kusai F. Abdulakhad Abdulakhad ; Kyivs. nats. un-t im. Tarasa Shevchenka. Kjiv, 2012. 20 s.

Baragi V. M., Becher G., Bendele A. M. et al. A new class of potent matrix metalloproteinase 13 inhibitors for potential treatment of osteoarthritis: Evidence of histologic and clinical efficacy without musculoskeletal toxicity in rat models. Arthritis. Rheum. 2009. Vol. 60 (7). P. 2008–2018.

Dubinina E. E., Burmistrov S. O., Hodov D. A., Porotov I. G. Okislitelnyie modifikatsii belkov syivorotki krovi cheloveka, metod ee opredeleniya. Voprosyi meditsinskoy himii. 1995. # 1. S. 24–26.

Ellman G. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959. Vol. 82, № 1. P. 70–77.

Lauridsen C. From oxidative stress to inflammation: redox balance and immune system. Poult Sci. 2019 Oct. 1; 98(10): 4240–4246.

Drevet S., Gavazzi G., Grange L. et al. Reactive oxygen species and NADPH oxidase 4 involvement in osteoarthritis. Exp. Gerontol. 2018. Vol. 111. P. 107–117.

Zahan O. M., Serban O., Gherman C., Fodor D. The evaluation of oxidative stress in osteoarthritis. Med Pharm Rep. 2020 Jan.; 93(1): 12–22.

Hawkins C. L, Davies M. J. Detection, identification, and quantification of oxidative protein modifications. J Biol Chem. 2019 Dec. 20; 294(51): 19683–19708.

Lévy E., El Banna N., Baille D. et al. Causative Links between Protein Aggregation and Oxidative Stress: A Review. Int J Mol Sci. 2019 Aug. 9; 20(16): 3896.

Sánchez-Rodríguez M. A., Mendoza-Núñez V. M. Oxidative Stress Indexes for Diagnosis of Health or Disease in Humans. Oxid Med Cell Longev. 2019 Nov. 25; 2019: 4128.

Baba S. P. and Bhatnagar A. Role of thiols in oxidative stress. Curr Opin Toxicol. 2018 Feb.; 7: 133–139.

Mardinoglu A., Shoaie S., Bergentall M., Ghaffari P. et al. The gut microbiota modulates host amino acid and glutathione metabolism in mice. Mol Syst Biol. 2015 Oct. 16; 11(10): 834.

Schmacht M., Lorenz E., Senz M. Microbial production of glutathione. World J Microbiol Biotechnol. 2017 Jun;33(6):106.

Xu C., Shi Z., Shao J. et al. Metabolic engineering of Lactococcus lactis for high level accumulation of glutathione and S-adenosyl-L-methionine // World J. Microbiol Biotechnol. 2019 Nov. 14; 35(12): 185.

Domingues R. M., Domingues P., Melo T. et al. Lipoxidation adducts with peptides and proteins: deleterious modifications or signaling mechanisms? J. Proteomics. 2013. Vol. 92. P. 110–131.

Davies M. J. Protein oxidation and peroxidation. Biochem. J. 2016 Apr. 1; 473(Pt 7): 805–825.

Ajisaka K., Oyanagi Y., Miyazaki T., Suzuki Y. Effect of the chelation of metal cation on the antioxidant activity of chondroitin sulfates // Biosci Biotechnol Biochem. 2016. Vol. 80(6). P. 1179–1185.

Stabler T. V., Huang Z., Montell E. et al. Chondroitin sulphate inhibits NF-κB activity induced by interaction of pathogenic and damage associated molecules. Osteoarthritis Cartilage. 2017. Vol. 25(1). P. 166–174.

Iankovskyi D. S., Shyrobokov V. P., Dyment H. S. Innovatsiini tekhnolohii ozdorovlennia mikrobiomu liudyny. Nauka innov. 2018, 14(6): 5–17.

Wieërs G., Belkhir L., Enaud R. et al. How Probiotics Affect the Microbiota. URL: https://www.ncbi.nlm.nih.gov/pubmed/32010640 Front Cell Infect. Microbiol. 2020 Jan. 15; 9: 454.

.

Received: 18.05.2020

Revised: 19.06.2020

Signed for press: 19.06.2020




DOI: http://dx.doi.org/10.17721/1728_2748.2020.81.64-68

Refbacks

  • There are currently no refbacks.


Лицензия Creative Commons
This journal is available according to the Creative Commons License «Attribution» («Атрибуція») 4.0 Global (CC-BY).