Lipid peroxidation in rat cartilage under experimental osteoarthritis and administration of multiprobiotic

O. Korotkyi, L. Kot, K. Dvorshchenko
Taras Shevchenko National University of Kyiv, Kyiv; Taras Shevchenko National University of Kyiv, Kyiv; Taras Shevchenko National University of Kyiv, Kyiv

Abstract


The aim of the study was to investigate the effect of multiprobiotic on the content of lipid peroxidation products in rat cartilage during monoiodoacetate-induced osteoarthritis.
The study was carried out on white non-linear, sexually mature male rats (weight 180-240g), according to general ethical principles of experiments on animals. All animals were divided into four experimental groups. The first group – Control: animals got injection into knee ligament 0.05 ml of 0.9% NaCl solution on the first day of the experiment and then got intragastric administration 1 ml of drinking water per 1 kg of the animal weight daily for 14 days from the 8th to 22nd days. The second group – Multiprobiotic: animals got injection into knee ligament 0.05 ml of 0.9% NaCl solution on the first day of the experiment and then got intragastric administration 140 mg / kg of multiprobiotic Symbiter® (Prolisok ", Ukraine) diluted in 1 ml of drinking water per 1 kg of animal weight. The third group, MIA-induced OA: animals got injection into knee ligament 1 mg of sodium monoiodacetate, dissolved in 0.05 ml of 0.9% NaCl on the first day of the experiment and then got intragastric administration 1 ml of drinking water per 1 kg of the animal weight daily for 14 days from the 8th to 22nd days. The fourth group – MIA-induced OA + Multiprobiotic: animals got injection into knee ligament 0.05 ml of 1 mg of sodium monoiodacetate, dissolved in 0.05 ml of 0.9% NaCl on the first day of the experiment and then got intragastric administration 140 mg / kg of multiprobiotic diluted in 1 ml of drinking water per 1 kg of animal weight. All animals were killed on day 30 of the experiment, according to the protocol of the ethics committee with rapid blood sampling. The content of the products of oxidative modification of proteins (OMP) and oligopeptides was determined by the level of carbonyl derivatives that were detected in reaction with 2,4-dinitrophenylhydrazine. The content of diene conjugates was determined in the heptane-isopropanol extract by the spectrophotometric method, and of Schiff bases – by the fluorimetric method. The content of TBK-active compounds was determined by reaction with thiobarbituric acid.
It has been established that MIA-induced OA the content of lipid peroxidation products (diene conjugates, TBK-active compounds, schiff bases) increases in the cartilage. It was shown that with the administration of multiprobiotic in animals with MIA-induced OA, the above indicators were restored.

Keywords


monoiodoacetate-induced osteoarthritis, multiprobiotic, lipid peroxidation, cartilage

Full Text:

PDF>PDF

References


Man G.S., Mologhianu G. Osteoarthritis pathogenesis – a complex process that involves the entire joint // J. Med. Life. – 2014. – Vol. 7, №1. – P. 37-41.

O'Neill T.W., McCabe P.S., McBeth J. Update on the epidemiology, risk factors and disease outcomes of osteoarthritis // Best Pract Res Clin Rheumatol. 2018 Apr;32(2):312-326. doi: 10.1016/j.berh.2018.10.007.

Hunter D.J., Bierma-Zeinstra S. Osteoarthritis // Lancet. 2019 Apr 27;393(10182):1745-1759. doi: 10.1016/S0140-6736(19)30417-9.

Vitetta L., Coulson S., Linnane A.W., Butt H. The gastrointestinal microbiome and musculoskeletal diseases: a beneficial rolefor probiotics and prebiotics // Pathogens. 2013 Nov 14;2(4):606-26. doi: 10.3390/pathogens2040606.,

Bravo-Blas A., Wessel H., Milling S. Microbiota and arthritis: correlations or cause? // Curr. Opin. Rheumatol. – 2016. – Vol. 28(2). – P. 161-167.

Vplyv okysnoho stresu na riven ekspresii heniv TGF–β i HGF u pechintsi shchuriv v umovakh tryvaloi shlunkovoi hipokhlorhidrii ta za vvedennia multyprobiotyka Cymbiter / K.O. Dvorshchenko [ta in.] // Ukr. biokhim. zhurn. – 2013. – T. 85, № 5. – S. 114–123

Abdulakhad K.F.A. Doslidzhennia vplyvu multyprobiotykiv hrupy "Symbiter" na sekretornu funktsiiu shlunka u shchuriv v umovakh tryvaloi hiperhastrynemii: avtoref. dys.….kand. biol. nauk: 03.00.13 / Abdulakhad Kusai F. Abdulakhad; Kyivs. nats. un-t im. Tarasa Shevchenka. – K., 2012. – 20 s.

Lugrin J., Rosenblatt-Velin N., Parapanov R., Liaudet L. The role of oxidative stress during inflammatory processes // Biol Chem. 2014 Feb;395(2):203-30. doi: 10.1515/hsz-2013-0241.

Drevet S., Gavazzi G., Grange L. et al. Reactive oxygen species and NADPH oxidase 4 involvement in osteoarthritis // Exp. Gerontol. – 2018. – Vol. 111. – P. 107-117. Available from: http://www.ncbi.nlm.nih.gov

Baragi V.M., Becher G., Bendele A.M., et al. A new class of potent matrix metalloproteinase 13 inhibitors for potential treatment of osteoarthritis: Evidence of histologic and clinical efficacy without musculoskeletal toxicity in rat models // Arthritis. Rheum. – 2009. – Vol. 60(7). – P. 2008-2018.

Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with Folin phenol reagent. J. Biol. Chem. 1951; 193(1): 265–275.

Gavrilov V.B., Gavrilova A.R., Hmara N.F. Izmerenie dienovyih kon'yugatov v plazme krovi po UF-pogloscheniyu geptanovyih i izopropanolnyih ekstraktov // Laboratornoe delo. – 1988. – # 2. – S. 60-63.

Колесова О.Е., Маркин А.А., Федорова Т.Н. Перекисное окисление липидов и методы определения продуктов липопероксидации в биологических средах // Лабораторное дело. – 1984. – № 9. – С. 540-546.

Sovremennyie metodyi v biohimii // Pod red. Orehovicha V.N., M: Meditsina, 1977. – S. 62-68.

Xue L., Li X., Chen Q., He J., Dong Y., Wang J., Shen S., Jia R., Zang Q.J., Zhang T., Li M., Geng Y. Associations between D3R expression in synovial mast cells and disease activity and oxidant status in patients with rheumatoid arthritis // Clin Rheumatol. 2018 Oct;37(10):2621-2632. doi: 10.1007/s10067-018-4168-1.

Yin G, Li Y, Yang M, Cen XM, Xie QB. Pim-2/mTORC1 Pathway Shapes Inflammatory Capacity in Rheumatoid Arthritis Synovial Cells Exposed to Lipid Peroxidations // Biomed. Res. Int. 2015;2015:240210. doi: 10.1155/2015/240210.

Shan L, Tong L, Hang L, Fan H. Fangchinoline supplementation attenuates inflammatory markers in experimental rheumatoid arthritis-induced rats // Biomed. Pharmacother. 2019 Mar;111:142-150. doi:10.1016/j.biopha.2018.12.043.

Rieder B., Weihs A.M., Weidinger A., Szwarc D., Nürnberger S., Redl H., Rünzler D., Huber-Gries C., Teuschl A.H. Hydrostatic pressuregenerated reactive oxygen species induce osteoarthritic conditions in cartilage pellet cultures // Sci. Rep. 2018 Nov 19;8(1):17010. doi:10.1038/s41598-018-34718-8.

van Dalen SCM, Kruisbergen NNL, Walgreen B, Helsen MMA, Slöetjes AW, Cremers NAJ, Koenders MI, van de Loo FAJ, Roth J, Vogl T, Blom AB, van der Kraan PM, van Lent PLEM, van den Bosch MHJ. The role of NOX2-derived reactive oxygen species in collagenase-induced osteoarthritis // Osteoarthritis Cartilage. 2018 Dec;26(12):1722-1732. doi:10.1016/j.joca.2018.08.014.

Abusarah J., Bentz M., Benabdoune H., Rondon P.E., Shi Q., Fernandes J.C., Fahmi H., Benderdour M. An overview of the role of lipid peroxidation-derived 4-hydroxynonenal in osteoarthritis // Inflamm Res. 2017 Aug;66(8):637-651. doi: 10.1007/s00011-017-1044-4.

Vnukov V.V., Krolevets I.V., Milyutina N.P., Gutsenko O.I., Zabrodin, M.A., Anina S.B., Brazhnikov Yu.I. Svobodnoradikalnoe okislenie v sinovialnoy zhidkosti i apoptoz hondrotsitov pri gonartroze. Valeologiya. 2012;(4):38.

Wu Q., Zhong Z.M., Zhu S.Y., Liao C.R., Pan Y., Zeng J.H., Zheng S., Ding R.T., Lin Q.S., Ye Q., Ye W.B., Li W, Chen J.T. Advanced oxidation protein products induce chondrocyte apoptosis via receptor for advanced glycation end products-mediated, redox-dependent intrinsic apoptosis pathway // Apoptosis. 2016 Jan;21(1):36-50. doi: 10.1007/s10495-015-1191-4.

Yankovskiy D.S. Mikroflora i zdorove cheloveka / D.S. Yankovskiy, G.S. Dyiment. – K.: TOV "Chervona Ruta–Turs", 2008. – 552 s.

Iankovskyi D.S., Shyrobokov V.P., Dyment H.S. Innovatsiini tekhnolohii ozdorovlennia mikrobiomu liudyny // Nauka innov. 2018, 14(6): 5-17.

Xu C., Shi Z., Shao J., Yu C., Xu Z. Metabolic engineering of Lactococcus lactis for high level accumulation of glutathione and S-adenosyl-Lmethionine // World J. Microbiol Biotechnol. 2019 Nov 14;35(12):185. doi: 10.1007/s11274-019-2759-x.

Wieërs G., Belkhir L., Enaud R., Leclercq S., Philippart de Foy J.M., Dequenne I., de Timary P., Cani P.D. // Front Cell Infect. Microbiol. 2020 Jan 15;9:454. doi: 10.3389/fcimb.2019.00454

Received: 22.01.2020

Revised: 24.02.2020

Signed for the press: 24.02.2020




DOI: http://dx.doi.org/10.17721/1728_2748.2020.80.41-44

Refbacks

  • There are currently no refbacks.


Лицензия Creative Commons
This journal is available according to the Creative Commons License «Attribution» («Атрибуція») 4.0 Global (CC-BY).