Induction of wheat seedlings resistance of different ecotypes to the effect of a drought simulated by a colloidal solution of Cu2+ and Zn2+ nanoparticles

V. Storozhenko, N. Svietlova, M. Kovalenko, L. Batsmanova, N. Taran
ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv; ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv; ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv; ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv; ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv


The aim of the investigation was to study the effect of colloidal solution of Cu2+ and Zn2+ nanoparticles on the pro/antioxidant balance, the content of photosynthetic pigments (chlorophylls a, b and carotenoids), the chlorophyll a/b ratio and the morphometric parameters (relative leaf water content, leaf area) of winter wheat Triticum aestivum L. varieties Acveduc (steppe ecotype, resistant to drought) and Stolichna (forest-steppe ecotype, sensitive to drought) under conditions of simulated drought. The drought was created by stopping of watering on the 8th day after emergence and maintaining the soil moisture at 30 % of the total moisture capacity for 3 days. Pre-sowing treatment of seeds with Cu2+ and Zn2+ nanoparticles was carried out by soaking of seeds in experimental solution (1 part of the mother colloid solution: 100 parts of water) for 4 hours. The control variant was soaked in distilled water. Then the seeds were washed and planted in a sand culture. The varietal specificity of the influence of a colloidal solution of metal nanoparticles on seedlings of the Acveduc and Stolichna varieties was revealed. Presowing treatment of seeds with Cu2+ and Zn2+ nanoparticles led to significant changes in the pro/antioxidant balance in leaves of seedlings, reducing the level of accumulation of TBARS, increasing the activity of key antioxidant enzymes (superoxide dismutase and catalase), stabilizing the content of photosynthetic pigments, increasing the relative water content in leaves and leaf area under simulated drought conditions. In general, under drought conditions, presowing of seed treatment with a colloidal solution of nanoparticles had a positive effect on the proantioxidant balance of plants and the morphometric parameters of leaves to a greater extent in seedlings of the steppe ecotype variety (Acveduc) and less in seedlings of the forest-steppe ecotype variety (Stolichna).


Cu2+ and Zn2+ nanoparticles, wheat, presowing seed treatment, TBARS, superoxide dismutase, catalase

Full Text:



Nezhadahmadi A., Prodhan G. Faruq Drought tolerance in wheat// Sci World J. – 2013. – 610721. doi: 10.1155/2013/610721.

Mochida K., Shinozaki K. Unlocking Triticeae genomics to sustainably feed the future// Plant Cell Physiol . – 2013. – 54. – Р.1931–1950.

Szegletes Z., Erdei L., Tari I., L. Cseuz Accumulation of osmoprotectants in wheat varieties of different drought tolerance // Cereal Res. Commun. – 2000. – 28. – Р. 403–410.

Zhu J. Salt and drought stress signal transduction in plants // Ann Rev Plant Biol – 2002. – 53. – Р. 247–273.

Lawlor D., Cornic G.Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants // Plant Cell Environ. – 2002. – 25. – Р. 275–294.

Yordanov I., Velikova V., Tsonev T. Plant responses to drought, acclimation, and stress tolerance// Photosynthetica. – 2000. – 38. – Р. 171–186.

Kang Y., Khan S., Ma X.Climate change impacts on crop yield, crop water productivity and food security// Prog Nat Sci . – 2009. – 19. – Р. 1665–1674.

Narayanan S., Sathy B., Mony U., Koyakutty M., Nair S., Menon D. Biocompatible magnetite/gold nanohybrid contrast agents via green chemistry for MRI and CT bioimaging// ACS Appl Mater Interfaces. – 2012. – 4. – Р. 251–260.

Batsmanova L., Gonchar L., Taran N., Okanenko A. Using a colloidal solution of metal nanoparticles as micronutrient fertilizer for Cereals// Proc Int Conf Nanomaterials Appl Properties. – 2013. – 2(4). – Р. 04NABM14-1– 04NABM14-2.

Olkhovych O., Volkogon M., Taran N., Batsmanova L., Kravchenko I. (2016) The effect of copper and zinc nanoparticles on the growth parameters, contents of ascorbic acid, and qualitative composition of amino acids and acylcarnitines in Pistia stratiotes L. (Araceae). – Nanoscale Res Lett. – 11 – 218. doi:1186/s11671-016-1422-9

Oukarroum A., Barhoumi L., Pirastru L., Dewez D. Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba // Environ. Toxicol. Chem. – 2013. – 32(4). – P.902–907.

Chichiriccò G., Poma A. Penetration and toxicity of nanomaterials in higher plants // Nanomaterials. – 2015. – 5(2). – P. 851–873.

Mustafa G., Komatsu S. Toxicity of heavy metals and metalcontaining nanoparticles on plants // Biochimica et Biophysica Acta. – 2016. – 1864 (8). – Р. 932–944.

Cox A., Venkatachalam P., Sahi S., Sharma N. Silver and titanium dioxide nanoparticle toxicity in plants: a review of current research // Plant Physiol Biochem. – 2016 – 107. – Р. 147–163.

Konotop I., Kovalenko M., Ulynets V., Meleshko A., Batsmanova L., Taran N. Phytotoxicity of colloidal solutions of metal-containing nanoparticles //Cytol Genet. – 2014. – 48(2). – Р. 99–102.

Lopatko K., Aftandiliants E., Kalenska S., Tonkha O. Mother colloidal solution of metals. B01J 13/00 Patent of Ukraine No. 38459 12 Jan 2009.

Григорюк И., Ткачев В., Савинский С., Мусиенко Н. Современные методы исследования и оценки засухо- и жароустойчивости растений: Метод. пособ. – К.: Науковий світ, 2003. – 139 с.

Андреева Л, Кожемякин Л., Кишкун А. Модификация метода определения перекисей липидов в тесте с тиобарбитуровой кислотой // Лаб. дело. – 1988. – № 11. – С. 41-43.

Giannopolitis C., Ries S. Superoxide dismutases: I. Occurrence in higher plants // Plant Physiol. – 1977. – 59(2). – Р. 309–314.

Kumar C., Knowles N. Changes in lipid peroxidation and lipolytic and free-radical scavenging enzyme during aging and sprouting of potato (Solanum tuberosum L.) seed-tubers // Plant Physiol. – 1993. – 102. – Р.115–124.

Wellburn A., The spectral determination of chlorophylls a and b as well, as the total carotenoids using various solvents with spectrophotometers of different resolution// J Plant Physiol. – 1994. – 144(3). – Р. 307–313.

Smart R., Bingham G. Rapid estimates of relative water content // Plant Physiol. – 1974. – 53(2). – Р.258–260.

Chanda S., Singh Y. Estimation of leaf area in wheat using linear measurements// Plant Breed Seed Sci. – 2002. – 46(2). – Р. 75–79.

Zhai G., Walters K., Peate D., Alvarez P., Schnoor J. Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar // Environ Sci Technol Lett. – 2014. – 1(2). – Р. 146–151.

Ghafariyan M., Malakouti M., Dadpour M., Stroeve P., Mahmoudi M. Effects of magnetite nanoparticles on soybean chlorophyll // Environ Sci Technol. – 2013. – 47(18). – Р. 10645–10652.

Falco W., Queiroz A., Fernandes J., Botero E., Falcão E., Guimarães F. Interaction between chlorophyll and silver nanoparticles: a close analysis of chlorophyll fluorescence quenching.//J Photochem Photobiol A Chem. – 2015. – 299. – Р. 203–209.

Barazzouk S., Kamat P., Hotchandan S. Photoinduced electron transfer between chlorophyll a and gold nanoparticles// J. Phys. Chem. B. – 2005. – 109 (2). – Р. 716–723.

Green B., Durnford D. The chlorophyll-carotenoid proteins of oxygenic photosynthesis // Annu Rev Plant Physiol Plant Mol Biol. – 1996. – 47. – Р. 685 –714.

Havaux M., Niyogi K. The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism/ // Proc Natl Acad Sci. USA. – 1999. – 96. – Р. 8762–8767.

Taheri M., Qarache H., Qarache A., Yoosefi M. The effects of zinc oxide nanoparticles on growth parameters of corn (SC704)// STEM Fellowship J. – 2015. – 1(2). – Р. 17–20.

Zaimenko N., Didyk N., Dzyuba O., Zakrasov O., Rositska N., Viter A. Enhancement of drought resistance in wheat and corn by nanoparticles of natural mineral analcite// Ecologia Balkanica – 2014. – 6(1). – Р. 1–10.

Received in the editorial: 21.09.2018

Received a revised version: 23.10.2018

Signed in the press: 23.10.2018


  • There are currently no refbacks.

Лицензия Creative Commons
This journal is available according to the Creative Commons License «Attribution» («Атрибуція») 4.0 Global (CC-BY).