Variability and properties of host defense peptides from the skin secretions of anurans

S. Oskyrko, J. Dudkina, T. Nikolaieva, T. Halenova, O. Marushchak
Taras Shevchenko National University of Kyiv, Kyiv; Taras Shevchenko National University of Kyiv, Kyiv; Taras Shevchenko National University of Kyiv, Kyiv; Taras Shevchenko National University of Kyiv, Kyiv; Schmalhausen Institute of Zoology of National Academy of Sciences of Ukraine, Kyiv


Cationic antimicrobial proteins are an important part of innate nonspecific immunity. It is the first defensive level, which is inherent in almost all living organisms. The main objective of such proteins is the destruction of dangerous microorganisms (fungi, bacteria, viruses, parasites etc.). The skin of amphibians is a rich source of these molecules, which are produced and stockpiled in skin glands, which are usually located on the dorsal side of the body. Basically, they are spread over the surface of the body or grouped in special morphological structures – parotids. Currently the host defensive proteins were found in members of all families of amphibians, that suggests a connection among them with evolutionary advantages. Moreover, amphibian antimicrobial proteins can be used in modern medicine. Amphibians can become a rich source of biologically active agents and usage of them is very beneficial for pharmaceutical industry. These substances appeared to have much more abilities than it was believed before. For example, they can be used in methods of blood folding or antiviral therapy. Taking this into account, it is very promising to study antimicrobial proteins in Ukraine (from 15 anuran species of 5 families (Pelobatidae, Hylidae, Bufonidae, Ranidae and Bombinatoridae). This article describes the chemical structure and properties of the antimicrobial proteins presently known from the studies and their presence in different families of Anura. The main aim of the work is to show the variability of these substances in anurans to create a background for further investigations of amphibians' antimicrobial proteins in Ukraine and studying of their pharmaceutical potential.


antimicrobial peptides, amphibians, protective peptides, skin glands, secretions

Full Text:



Jenssen H., Hamill P., Hancock R. E. Peptide antimicrobial agents. Clin. Microbiol. Rev. 2006;19:491–511.

Pukala T. L., Bowie J. H., Maselli V. M., Musgrave I. F., Tyler M. J. (2006). Host-defence peptides from the glandular secretions of amphibians: structure and activity. Nat. Prod. Rep. 23, 368–393.

Zasloff M. Antimicrobial peptides of multicellular organisms. Nature.2002;415:389–395.

Conlon J. M., Sonnevend A., Davidson C., Smith D. D., Nielsen P. F. The ascaphins: a family of antimicrobial peptides from the skin secretions of the most primitive extant frog, Ascaphus truei. Biochem. Biophys. Res. Commun.2004;320:170–175.

Ohnuma A., Conlon J. M., Kawasaki H., Iwamuro S. Developmental and triiodothyronine-induced expression of genes encoding preprotemporins in the skin of Tago's brown frog Rana tagoi. Gen. Comp. Endocrinol.2006;146:242–250.

Davidson C., Benard M. F., Shaffer H. B., Parker J. M., O'Leary C., Conlon J. M., Rollins-Smith L. A. Effects of chytrid and carbaryl exposure on survival, growth and skin peptide defenses in foothill yellowlegged frogs. Environ. Sci. Technol.2007;4:1771–1776.

Kilpatrick A. M., Briggs C. J., Daszak P. The ecology and impact of chytridiomycosis: an emerging disease of amphibians. Trends Ecol. Evol. 2010;25:109–118.

Chinchar V. G., Bryan L., Silphadaung U., Noga E., Wade D., Rollins-Smith L. Inactivation of viruses infecting ectothermic animals by amphibian and piscine antimicrobial peptides. Virol.2004;323:268–275.

Van Compernolle S. E., Taylor R. J., Oswald-Richter K., Jiang J., Youree B. E., Bowie J. H., Tyler M. J., Conlon J. M., Wade D., Aiken C., Dermody T. S., Kewal Ramani V. N., Rollins-Smith L. A., Unutmaz D. Antimicrobial peptides from amphibian skin potently inhibit human immunodeficiency virus infection and transfer of virus from dendritic cells to T cells. J. Virol.2005;79:11598–11606.

Yasin B., Pang M., Turner J. S., Cho Y., Dinh N. N., Waring A. J., Lehrer R. I., Wagar E. A. Evaluation of the inactivation of infectious Herpes simplex virus by host-defense peptides. Eur. J. Clin. Microbiol. Infect. Dis. 2000;19:187–194.

Scorciapino M. A., Manzo G., Rinaldi A. C., Sanna R., Casu M., Pantic J. M., Lukic M. L., Conlon J. M. Conformational analysis of the frog skin peptide, plasticin-L1, and its effects on production of proinflammatory cytokines by macrophages. Biochem.2013;52:7231–7241.

Srinivasan D., Mechkarska M., Abdel-Wahab Y. H., Flatt P.2006;27:3077–3084.

Conlon J. M., Kolodziejek J., Mechkarska M., Coquet L., Leprince J., Jouenne T., Vaudry H., Nielsen P. F., Nowotny N., King J. D. Host defense peptides from Lithobates forreri, Hylarana luctuosa, and Hylarana signata (Ranidae): Phylogenetic relationships inferred from primary structures of ranatuerin-2 and brevinin-2 peptides.Comp. Biochem. and Phys. 2014;9:49–57.

Conlon J. M., Kolodziejek J., Nowotny N. Antimicrobial peptides from the skins of North American frogs. Biochim. Biophys. Acta.2009;1788:1556–1563.

Eley A., Ibrahim M., Kurdi S. E., Conlon J. M. Activities of the frog skin peptide, ascaphin-8 and its lysine-substituted analogs against clinical isolates of extended-spectrum beta-lactamase (ESBL) producing bacteria. Pept.2008;29:25–30.

Conlon J. M., Ahmed E., Pal T., Sonnevend A. Potent and rapid bactericidal action of alyteserin-1c and its [E4K] analog against multidrugresistant strains of Acinetobacter baumannii. Pept.2010;31:1806–1810.

Mangoni M. L., Marcellini H. G., Simmaco M. Biological characterization and modes of action of temporins and bombinins H, multiple forms of short and mildly cationic anti-microbial peptides from amphibian skin. J. Pept. Sci. 2007;13:603–613.

Nicolas P., El Amri C. The dermaseptin superfamily: a gene-based combinatorial library of antimicrobial peptides. Biochim. Biophys. Acta. 2009;1788:1537–1550.

Frost D. R. Amphibian species of the world: an online reference. Version 5.4. American Museum of Natural History, New York. 2010.

Magalha˜es B. S., Melo J. A., Leite J. R., Silva L. P., Prates M. V., Vinecky F., Barbosa E. A., Verly R. M., Mehta A., Nicoli J. R., Bemquerer M. P., Andrade A. C., Bloch C. J. Post-secretory events alter the peptide content of the skin secretion of Hypsiboas raniceps. Biochem. Biophys. Res. Commun. 2008;377:1057–1061.

Sitaram N., Sai K. P., Singh S., Sankaran K., Nagaraj R. Structurefunction relationship studies on the frog skin antimicrobial peptide tigerinin 1:design of analogs with improved activity and their action on clinical bacterial isolates. Antimicrobial Agents and Chemotherapy, 2008;46(7):2279- 2283.

Yeaman M. R., Yount N. Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev.2003;55:27–55.

Chernoshtan K. O., Bondarenko B. M., Danilenko V. S., Duzhak V. G., Omelyanenko Z. P., Lysenko O. K. Toxicology and pharmacology of poison poisons of the genus Bufo. Mod. Tox. Prob. 2000;4:6–17.

Pereira H. A. Novel therapies based on cationic antimicrobial peptides. Curr. Pharm. Biotechnol. 2006;7:229–234.

Peschel A., Sahl H. G. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat. Rev. Microbiol.2006;4:529–536.

Attoub, S., Mechkarska, M., Sonnevend, A., Radosavljevic, G., Jovanovic, I., Lukic, M. L., Conlon, J. M. Esculentin-2CHa: A host-defense peptide with differential cytotoxicity against bacteria, erythrocytes and tumor cells. Pep. 2013;39:95–102.

Received in the editorial: 12.09.2018

Received a revised version: 15.10.2018

Signed in the press: 15.10.2018


  • There are currently no refbacks.

Лицензия Creative Commons
This journal is available according to the Creative Commons License «Attribution» («Атрибуція») 4.0 Global (CC-BY).