Quantitative and qualitative microbiota composition of the distal colon of rats in different terms of experimental 6-OHDA-induced parkinsonism (pilot study)

V. Stetska, N. Shystavetska, T. Serhiychuk, T. Dovbynchuk, G. Tolstanova
Taras Shevchenko National University of Kyiv, Kyiv; Taras Shevchenko National University of Kyiv, Kyiv; Taras Shevchenko National University of Kyiv, Kyiv; Taras Shevchenko National University of Kyiv, Kyiv; Taras Shevchenko National University of Kyiv, Kyiv


In the aspect of the existence of the gut brain axis are considered quantitative changes of the distal part of colon's microbiota (Mb) under conditions of experimental parkinsonism. Studies were done on laboratory non-linear male rats (140–160 g, n = 7). Parkinsonism was modeled by onesided destruction of the dopaminergic neurons of a compact part of the substantia nigra of brain, causing by stereotaxic microinjections 12 mg neurotoxin 6-OHDA (Sigma-Aldrich, Germany) in the left lateral ascending bundle. Changes in the quantitative Mb composition were determined bacteriologically by sowing 10-fold dilutions of fecal biopsy on differential diagnostic media (HiMedia, India) in 1, 1.5, 2 months after induced parkinsonism. Research has been shown that within the fecal Mb of rats, within 2 months from the beginning of the experiment, significant changes were detected only for E.coli. The amount of lac(+) E.coli increased from 1,5 months to 2 folds (from lg 4,65 ± 0,80 CFU/g to lg 6,08 ± 0,70 CFU/g  (1,5 months), after 2 months – from lg 4.39±0.55 CFU/g to lg 6.24±1.26 CFU/g. At the same time, the amount of E.coli lac(-) decreased by 2-3 folds. The number of the genus Bifidobacterium and Lactobacillus remained within the control values. After 2 months after induced parkinsonism, there was a tendency to increase the number of Clostridium species. These results suggest minor microbiota changes of 6-OHDA-induced parkinsonism in rats. These results are preliminary and require more detailed study.


microbiota, Parkinson's disease, neurodegeneration

Full Text:



Cacabelos R. Parkinson's Disease: From Pathogenesis to Pharmacogenomics. Int. J. Mol. Sci. 2017. 7(12):1261-72. doi: 10.3390/ ijms18030551.

Kholba M.Yu., Pohorilova I.O., Hrinkevych V.M. [Dosiahnennia u vyvchenni ta likuvanni khvoroby Parkinsona v Ukraini]. Zbirnyk naukovykh prats VIII Vseukrainskoi naukovo-praktychnoi konferentsii z mizhnarodnoiu uchastiu "Biolohichni doslidzhennia – 2017"; 2017 March 14-16; Zytomyr.

Foster JA, Lyte M, Meyer E, Cryan JF. Gut microbiota and brain function: an evolving field in Neuroscience. Int. J. Neuropsychopharmacol. 2016. 19(5). pii: pyv114. doi: 10.1093/ijnp/pyv114.

Sherwin E, Dinan TG., Cryan JF. Recent developments in understanding the role of the gut microbiota in brain health and disease. Ann N Y Acad Sci. 2017. 1420(1):5-25. doi: 10.1111/nyas.13416.

Barajon I, editors. Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. J Histochem Cytochem. 2009 Nov;57(11):1013-23. doi: 10.1369/jhc.2009.953539.

Oleskina AV, El'-Registan GI, Shenderov BA. Role of Neuromediators in the Functioning of the Human Microbiota: "Business Talks" among Microorganisms and the Microbiota-Host Dialogue. Microbiology. 2016. 85(1):1–22.

Lebouvier T., editors. The second brain and Parkinson's disease. Eur J Neurosci. 2009 Sep;30(5):735-41. doi: 10.1111/j.1460-9568.2009.06873.x.

Rabadanova EA. Gel'pej MA, Goncharova ZA. [Nemotornye simptomy bolezni Parkinsona, ih struktura i vlijanie na kachestvo zhizni pacientov]. Prakticheskaja medicina. 2015. 90(5):111-115. Russian.

Sveinbjornsdottir S. The clinical symptoms of Parkinson's disease. J. of Neurochemistry. 2016. 1:318-324. doi: 10.1111/jnc.13691.

Stirpe P, Hoffman M, Badiali D, Colosimo C. Constipation: an emerging risk factor for Parkinson's disease? Eur J Neurol. 2016. 23(11):1606-1613. doi: 10.1111/ene.13082.

Fasano A, Visanji NP, Liu LW, Lang AE, Pfeiffer RF. Gastrointestinal dysfunction in Parkinson's disease. Lancet Neurol. 2015. 14(6):625-39. doi: 10.1016/S1474-4422(15)00007-1.

Keshavarzian A, editors. Colonic Bacterial Composition in Parkinson's Disease. Mov. Disord. 2015. 30(10):1351-60. doi: 10.1002/mds.26307.

Talanov S. A., Oleshko N. N., Tkachenko M. N., Sagach V. F. Pharmacoprotective Influences on Different Links of the Mechanism Underlying 6-Hydroxydopamine-Induced Degeneration of Nigro-Striatal Dopaminergic Neurons Neurophysiology. 2006 March-April; 38(2):150-156.

Mittal R, editors. Neurotransmitters: The critical modulators regulating gut-brain axis. J Cell Physiol. 2017. 232(9): 2359–2372. doi: 10.1002/jcp.25518.

Timothy R. Sampson, Sarkis K. Mazmanian. Control of Brain Development, Function, and Behavior by the Microbiome. Cell Host Microbe. 2015. 17(5): 565–576. doi: 10.1016/j.chom.2015.04.011

Evans M.L., editors. The bacterial curli system possesses a potent and selective inhibitor of amyloid formation. Mol Cell. 2015 Feb 5;57(3):44555. doi: 10.1016/j.molcel.2014.12.025.

Chervinska T., editors. The disturbance of central dopaminergic neurons in rat model of Parkinson's disease increases susceptibility to colonic inflammation. 23rd United European Gastroenterology Week; Oct 15-19; Barcelona, Spain; 2015.

Received in the editorial: 15.08.2018

Received a revised version: 17.09.2018

Signed in the press: 17.09.2018


  • There are currently no refbacks.

Лицензия Creative Commons
This journal is available according to the Creative Commons License «Attribution» («Атрибуція») 4.0 Global (CC-BY).